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Abstract. The original Lafler-Kinman statistic for exploring any auto-correlation within a set of measurements
relative to their underlying variance has been regularized so that its determination is independent of the data
sample size. In its new form, the power of its application to String-Length period searches (SLLK) has been
assessed in terms of establishing confidence levels to point value detections within any generated periodogram
and to confidence levels of not missing the detection when an underlying period is present. These estimations
depend only on the amplitude of the variation relative to the measurement noise and are independent of the
signal-to-noise ratio of the measurements and of their number. Examples of the behaviour of periodograms based
on SLLK as produced from computer generated data and real data are discussed. It is also demonstrated that the
principle can be readily extended to multivariate data in the form of Rope-Length period searches (RLLK), with
the measurements of each parameter not necessarily being taken simultaneously nor with equal number. Using
simulated data it is shown that the power of period detection improves slightly if the underlying modulations
in each parameter are out of phase with each other. Examples of the RLLK principle are given for computer
simulated data and for stellar multi-colour photometric and polarimetric measurements.
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1. Introduction

The Lafler-Kinman (later referred to as LK) statistic was
originally presented in connection with the determina-
tion of periods of RR Lyrae stars from small samples of
single passband magnitude measurements (see Lafler &
Kinman 1965). Reference to its later use in general stel-
lar photometric variability may be found in a range of
papers including IBVS notes (see, for example, Rosenweig
1976; Bell et al. 1983; Waugh 1984; Boyd et al. 1985). The
statistic has quite general application beyond simple pho-
tometry and has been applied, for example, by Walborn
& Nichols (1994) to UV line variations associated with
stellar wind variability.

The LK period search statistic may be classed as being
a non-parametric method. For each trial period, P , (or fre-
quency, ν) taken from a grid, P1,∆P, P2 (or ν1,∆ν, ν2),
the original data, m1 . . .mj . . .mN , are assigned phases,
φ1 . . . φj . . . φN , which are then re-ordered in ascending se-
quence. The re-ordered data, m1 . . .mi . . .mN , (note the
change in subscript from “ j ” to “ i ”) may be examined
by inspection across the full phase interval, 0.0 to 1.0. For
each period, the LK statistic performs a “String-Length”
(S–L) summation of the squares of the differences between
the consecutive phase re-ordered measurement values. The
variation of S–L with period (or frequency) may be con-
sidered as providing a periodogram, SLLK(P ), from which
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any well defined minimum can be considered as corre-
sponding to the underlying period. Alternative S–L meth-
ods include those of Renson (1978) and Dworetsky (1983).

Inspection of the literature citing use of the LK princi-
ple generally shows that periods are promoted without any
indication of the certainty of detection or with confidence
intervals (errors) assigned to the determined period. Some
references suggest that a variant of the LK statistic has
been applied but without its description. For example, a
basic period search may be undertaken by calculating the
statistic’s numerator (see Eq. (1)), without incorporating
the denominator’s normalizing factor.

In this work, the LK method is more firmly estab-
lished with a clear recipe for its application. Its form is
revised so that the estimation of the statistic is freed from
data sample size bias. The power of the statistic, in terms
of its abilities to detect a period and for any period not
to be overlooked, is explored according to the number of
available measurements, N , and their signal-to-noise ra-
tio. The LK statistic is also considered as a means of in-
vestigating the nature of the temporal assembly of data
which, without the time element, may simply appear to
be distributed Normally.

The statistic is developed to provide search algorithms
for application to multivariate data. This latter exercise
involves the combination of S–L calculations and might be
described as a “Rope-Length” (R–L) method giving rise
to periodograms assigned the abbreviation RLLK(Z,P ),
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where Z corresponds to the number of measured parame-
ters. In the first instance the R–L methods are considered
for data involving simultaneously measured parameters.
The method is then generalized to show that it can be
applied to multivariate data sets with parameters mea-
sured at independent times, so illustrating how SLLK pe-
riodograms obtained from observations of different param-
eters are readily combined.

2. The SLLK statistic

The original LK statistic, Θ(P ) , is based on the deter-
mination of the sum of the squares of the vector lengths
(S–Ls) required to connect re-ordered measurements, mi,
in phase sequence, φi, for each of the trial periods in the
prescribed grid. The essence of the original formulation
may be expressed in the form of a statistic written as:

Θ(P ) =

N∑
i=1

[(
mi+1 −mi

)2]
N∑
i=1

[(
mi −m

)2] (1)

where m is the mean value of the measurements.
Although not mentioned by LK, it may be noted that

full utilization of the data is made by including the vec-
tor length between the last and first measurement of the
re-ordered sequence by letting mN+1 = m1 , in the above
summation. By using the squares of the vector lengths in
the summation, both the upswings and downswings be-
tween the adjacent re-ordered data make a positive contri-
bution to the statistic so that it does not converge to zero
as N increases. As expressed in Eq. (1), the normalizing
denominator is N× the variance of the measurements. By
applying this factor the statistic’s value becomes indepen-
dent of the measurement noise. Although it has no con-
sequence on the determination of the minima positions in
the S–L periodogram, this factor produces regularisation
of the periodogram continuum levels with a scale allowing
standard confidence levels of detection to be applied to
any suspected period, no matter the signal-to-noise ratio
(S/N) of the data; Horne & Baliunas (1986) showed the
importance of doing this in their refinement of a period
searching method involving Fourier analysis.

By expanding both the numerator and denominator of
the statistic, it is readily shown that

Θ(P ) =
2×

( N∑
i=1

[(
mi

)2]− N∑
i=1

[(
mimi+1

)])
N∑
i=1

[(
mi

)2]−Nm2

· (2)

Again, it may be noted that the first element of the nu-

merator,
N∑
i=1

[(
mi

)2] , is independent of P and needs to

be calculated just once for the exercise and that only
N∑
i=1

[(
mimi+1

)]
requires determination for each of the pe-

riods in the grid. It is this element in the statistic that

explores a kind of correlation value or co-variance between
adjacent measurement values in the succesively re-ordered
data. If oscillatory behaviour is not present, none of the ex-
amined periods will provide a correlation with the summa-
tion of the products of the phase adjacent measurements
converging to Nm2 for large N . Thus, in the limit, the
values of Θ(P ) are equal to 2.0 (see Eq. (2)). As N is
not infinite, any periodogram based on Θ(P ) will fluctuate
about a mean value ≈2.0.

Trial applications of the LK statistic, as calculated by
Eq. (1), show that the mean periodogram levels increase
slightly to be above 2.0 as N reduces, resulting from the
fact that the denominator relates to the ‘true’ variance
of the data. This problem is addressed by the introduc-
tion of a term as in the definition of the “sample” vari-
ance. By scaling the LK statistic by the factor (N−1)/N ,
sample-size bias is removed. In addition, to generate pe-
riodograms with continuum levels of unity, a further nor-
malizing factor of 1/2 needs to be applied. A regularized
formula for applying the LK principle leading to SLLK(P )
periodograms may thus best be written as

T (P ) =

N∑
i=1

[(
mi+1 −mi

)2]
N∑
i=1

[(
mi −m

)2] × (N − 1)
2N

· (3)

If the data contain periodicity, T (P ) should achieve min-
imum value at the underlying period, P0 , within the fluc-
tuations across the periodogram with mean level of ≈1.0.
For P0 , the path through the component vectors in the
corresponding phase/measurement diagram will display a
relatively smooth undulating pattern, with the cycle oc-
cupying the full phase window. For any suspected period,
it is always sensible practice to construct this diagram for
inspection.

3. The behaviour of SLLK(P)

3.1. The statistics of point values

Various exercises were established to explore the be-
haviour of periodograms produced by the T (P ) statistic
and to examine its power to detect periodicity. For the
simulations, data collection was mimicked by computer
generation of N values from an underlying sinusoidal sig-
nal, the simulated measurements being represented by

mj = A+B sin(2πtj/P0) + ηj (4)

where A is the mean level of the signal, B the amplitude of
the variation, tj the time of measurement and ηj a noise
value which may equally well be positive or negative. By
using a NAG (Numerical Algorithms Group) routine, the
N values of tj/P0 were generated randomly within the
range 0 and 1, corresponding to the signal’s phase, φj ,
so that the argument of the sine function was selected
randomly from a uniform distribution between 0 and 2π.
This routine was seeded at onset so that the selection was
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non-repeatable for each running of the program. For each
generated phase value, the corresponding mj was calcu-
lated according to the input values of A, B and the func-
tion chosen to mimic noise. By subjecting each basic mea-
surement to a second NAG routine to provide a Gaussian
distribution of values with mean value A+ B sin(φj) and
variance associated with photon counting statistics, (i.e.,
σ2 = A + B sin(φj)), random selection of a single value
provided the value of mj . Although the overall procedure
does not exactly replicate the real situation whereby data
are collected in bunches of unequal number, spaced by in-
tegral intervals of 24 hours, over a total time window of
many periods, the scheme is sufficient to explore the sta-
tistical behaviour of T (P ), under the notion that any data
are considered as providing random phase values over the
window 0 to 1 when folded on any trial period.

In this analysis, homogeneous data are assumed with
the values carrying the same level of noise, i.e., the S/N
ratio of the measurements is constant. As the T (P ) statis-
tic is normalized with respect to the sample variance of
measurements, its power of period detection may be sim-
ply explored according to the ratio, X , of the underlying
amplitude, B , to the S/N ratio of the measurements. For
data limited in accuracy by photon counting statistics, the
measurement noise may be simply expressed as being the
square root of the signal. Hence the value of X may be
expressed as

X =
B

[A+B sin(2πtj/P0)]1/2
≈ B

A1/2
(5)

when A� B .
The range of mimicked data sets investigated covered

values of N from 5 to 100 with values of X from 0.5 to 10.
For any given value of X and N , checks showed that the
numerical behaviour of T (P ) is independent of the sig-
nal level and of the S/N ratio of the basic measurements,
so confirming the efficacy of the normalizing procedure
defining T (P ). The statistical behaviour of T (P ) when
no periodicity is present was investigated simply by let-
ting B = 0.0. For this case the mean level through the
periodograms, T (P ) , was found to be ≈1.0 for all N, as
expected. For data involving small X , the levels of all
periodograms were close to unity, a very small departure
resulting from the signal oscillation affecting an otherwise
Normal distribution of measurements.

From the simulated data produced in the way above,
two values for the S–L were determined. Firstly, calcu-
lations of T (P ) were obtained directly, with the various
phase values generated in random order, these effectively
being representative of any trial mismatched period. For
each combination of N and X , the procedure was per-
formed 2000 times. By re-ordering the results in ascending
sequence, again by a NAG routine, a normalized cumula-
tive distribution function (CDF) for T (P ) is generated.
Figure 1 provides examples of such CDFs for three differ-
ent values of N , for simulated data with B = 0.0. It can be
seen that the spread in values of T (P ) decreases with N ,
i.e., the noise of the periodogram reduces with N , as might
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Fig. 1. The three symmetric normalized CDFs to the right
correspond to data with no oscillatory signal present (X = 0);
the crossovers for all N occur at the value of T (P ) = 1.0. The
spread in the T (P ) values at the low and high tails, describes
the noise of the associated periodogram which, as expected,
decreases with N . The T [90](P ) and T [95](P ) levels are marked
and their values may be determined for any CDF. The three
asymmetric curves in the left of the diagram [smaller values of
T (P )] provide examples of T (P0) CDFs for N = 10, 20 and 50
with X = 1.0; the upper tail percentile levels of T [95](P0) and
T [90](P0) are marked.

be expected. Corresponding to the 10th, 50th and 100th
points in the CDF, the values of T (P ) at the lower 1%, 5%
and 10% quantiles may be read, so providing boundaries
which any spot value must fall below for a period detec-
tion at confidence levels of 99%, 95%, 90% respectively,
these being written as T [99](P ), T [95](P ) and T [90](P ).

Secondly, for each of the N,X combinations, the data
were ordered in ascending phase from 0 to 1, the determi-
nations of T (P ) now taking minimum values as though P
is selected as P0 . Again 2000 determinations from each cy-
cle were re-ordered in ascending sequence to provide CDFs
for T (P0) (see Fig. 1). In the assessment of the power not
to miss a period detection as a result of the way a par-
ticular data sample has been assembled, the behaviour of
the upper tail of the distribution of T (P0) is important
and the 90%, 95% and 99% percentiles were selected in
this zone, these corresponding to the 1901st, 1951st and
1991st points and being written as T [90](P0), T [95](P0) and
T [99](P0).

The whole procedure above was undertaken 30 times to
confirm the stability of all the determined elements from
the CDFs of T (P ) and T (P0); overall means were ob-
tained for T (P ) and T (P0) and for the various defined
percentiles.

The determined mean T (P0) according to the N,X
values correspond to the S–Ls obtained by connecting
the data when the trial period matches the underlying
value. Their behaviour and the associated distributions
from which they are determined also offer information
on the expectation to detect any underlying period.
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Fig. 2. An example of the investigation of the behaviour of
T (P0) according to the number of measurements, N , is pre-
sented for the situation of an underlying sinusoidal variation
with X = 3.0 . The behaviour of T (P0) displays a smooth fall
with N , as do the curves for T [95](P0) and T [99](P0). For ref-
erence, the behaviour of T (P ) with B = 0.0 is displayed. The
value of T (P ) is = 1.0, independent of N . Curves are drawn
for the lower percentile values T [99](P ) and T [95](P ), these
displaying minima at some low value of N(<10). As examples
of the interpretation of the crossovers of curves within the fig-
ure, it can be seen that ∼12 data points are required to obtain
detection with a 99% confidence level with a 50% chance of
making the detection; ∼24 measurements are required to ob-
tain the same level of confidence but with a 99% certainty of
making the detection.

As mentioned above, if a trial value of P provides an S–
L smaller than those associated with T [90](P ), T [95](P )
and T [99](P ), then this period may be considered as
being detected at the corresponding confidence level.
Requirements of a data sample in terms of the number
of measurements needed for detection of a period at a se-
lected confidence level may be readily assessed by plotting
T (P0) against N together with various percentile values
T [%](P ) and noting the crossover positions (see the exam-
ple in Fig. 2).

Any S–L for a period P0 using N data points, may
be considered to have arisen from a distribution of values
with a mean of T (P0) . It will therefore be appreciated
that any calculated S–L value matching the above defined
crossover points corresponds to a 50% probability of de-
tecting the underlying period from random data sampling
patterns. Even if a period of P0 is present, the sampling
for some particular data sets may produce an S–L value at
P0 which happens to be larger than the mean of its under-
lying distribution. With such a higher value, it might be
embedded in the noise of the periodogram and the period
would not be detected. Thus the power of the estimator
not to miss detection of a period might be more realisti-
cally assessed from the crossovers of the low end tail of the
distribution of T (P ) with those of the high end tail of the
distribution of T (P0) . It was for this reason that the 99%,

95% and 90% percentiles of the upper tail of the CDF of
T (P0) were high-lighted in the exercise. By determining
N for which the various selected percentile values asso-
ciated with the larger values of T (P0) are smaller than
those of the selected percentiles of the smaller values of
T (P ), the probability of not missing an underlying period
and detecting it at some particular level of confidence may
be estimated according to the data sample size.

An example of the interpretation of an investigation of
the behaviour of T (P ) [N, X = 0.0], T (P0) [N, X = 3.0]
is presented in Fig. 2. As expected, the mean values of
un-ordered data, T (P ) , forming any periodogram are con-
stant with a value of 1.0. The figure shows the behaviour of
the T [95](P ) and T [99](P ) values, corresponding to lower
excursions within the generated periodogram, with min-
ima between N = 5 and 8; for larger data samples, the
curves converge smoothly towards the level of 1.0 illustrat-
ing the reduction of the periodogram noise as N increases.
The curves reflecting the behaviour of T (P0), T [95](P0)
and T [99](P0) all exhibit a near exponential fall indicating
the improved period detectivity as N increases.

From Fig. 2, inspection of T [99](P ) [N,X = 3.0] shows
that for any period to be detected with a confidence level
of 99%, the value of T (P ) must be smaller than 0.35 for
N = 10 and smaller than 0.53 for N = 25. The variation
of the mean values T (P0), shows a crossover with T [99](P )
at N ∼ 12, this giving a criterion for the number of data
points required for a 50% chance of detection at a 99%
confidence level. Inspection of the crossover of T [99](P )
with the curves corresponding to T [95](P0) and T [99](P0)
shows that for a detection with 99% confidence, the 95%
and 99% chances of succeeding require N to be >19 and
24 respectively.

Similar diagrams for other values of X show the curves
for T [95](P0) [N ] and T [99](P0) [N ] are sensitive to the ra-
tio of the sinusoidal amplitude to the S/N ratio of the
basic measurements. When X is increased to 5, the num-
ber of points required for detection reduces to ∼11 at
the 50% probability level of detection and to 16 with a
99% probability. A summary of the cross-over points of
T (P ) [N, X = 0.0] at the 90%, 95% and 99% lower levels
with T (P0) for X values from 0.5 to 10 is presented in
Table 1. Also provided are the number of required mea-
surements to ensure at the listed 99% confidence levels
that any period would not be missed from any random
data collection.

The above study of T (P ) provides information on the
statistical behaviour of point values in the periodogram.
Although it does not offer a definitive recipe for fully as-
sessing the behaviour over the interval containing an iden-
tifiable period, the results give insight on confidence levels
of the detection. If no period is detected, a point value as-
sessment can be applied to estimate the amplitude level
that would have been confidently detected from the N
values of the data set.

Point values may, however, be applied directly to study
the way any data have been assembled. For example, in the
first instance, some data, without the time element, may
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Table 1. For a range of X values from 0.5 to 10 [column 1] and for each of the lower percentiles T [99](P ) , T [95](P ) and
T [90](P ) of the noise associated with a periodogram, the values of N and T (P0) at the cross-over points are listed, [columns
2:3, 6:7 and 10:11]. These provide guides in terms of the number of measurements required for the detection of a period according
to the value of X. Similar cross-over values of N and T [99](P0) are also provided [columns 4:5, 8:9, 12:13], these providing
guides as to the measurement number requirements for a period not to be missed from any data sample collected at random.

T [99](P ) T [95](P ) T [90](P )

X N T (P0) N T [99](P0) N T (P0) N T [99](P0) N T (P0) N T [99](P0)

0.5 >100 — >100 — >100 — >100 — >100 — >100 —

1.0 59 0.68 >100 — 35 0.69 >100 — 26 0.70 >100 —

2.0 16 0.44 44 0.63 12 0.51 36 0.69 10 0.57 30 0.72

2.5 14 0.41 30 0.56 10 0.48 24 0.62 9 0.55 21 0.66

3.0 12 0.38 24 0.52 10 0.48 19 0.59 8 0.53 17 0.63

4.0 11 0.36 18 0.45 9 0.46 15 0.54 8 0.52 14 0.60

5.0 11 0.35 16 0.44 9 0.45 14 0.53 8 0.51 13 0.59

10.0 10 0.34 14 0.39 8 0.44 12 0.50 7 0.50 11 0.56

suggest that they are part of some Normal distribution.
By applying the SLLK statistic, the value of T should
be close to unity. If the value is smaller, its departure
from 1.0 may be tested for its statistical significance to
explore whether the data form a correlated time sequence
and are not simply representative of measurements taken
at random from the underlying Normal distribution. Such
an exercise was recently applied by Oskinova et al. (2001)
to X-ray studies of hot stellar winds.

3.2. The behaviour of periodograms

The analysis above concentrates on the statistical be-
haviour of spot values of T (P ) making up the peri-
odograms. Perhaps of more relevance is the behaviour of
the periodogram itself, particularly over the zone which
includes any underlying period.

Again, the same computer programs were used to pro-
duce artificial data with the addition that the phase values
were ascribed as j + φj , i.e., to each of the generated ran-
dom phase values an integer was added in succession from
1 to N . In this way the value of the period is effectively
normalized to be unity, with a sampling routine which
provides one value per cycle with random phase. SLLK
periodograms obtained from the exercise show that when
X = 0.0, the mean values of T (P ) are unity and that the
noise behaves according to the earlier derived CDF for the
given N measurements. Various periodograms for the X
values listed in Table 1 were generated covering the range
P = 0.9 to 1.1, with selected periods differing by 0.001, the
latter being approximately the limit of period resolution,
i.e., there are no zones through T (P ) with flat sections
over which the measurement order does not change for
successive trial periods.

Figure 3 provides three examples of the behaviour of
T (P ) around the value of P0 for N = 15 and X = 3.0 .
Rather than displaying a point minimum at the value of
P = 1.0, a typical periodogram displays a noisy descent
from unity to a minimum followed by a noisy return. It can
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Fig. 3. Three sample periodograms from artificial data com-
prising 15 randomly phased measurements with X = 3.0 . It
may be noted that the noted minima around P = 1.0 lie below
the marked 99% level of the noise of the periodogram.

be seen that the minima all lie below the 99% noise level
associated with extreme low point values within a peri-
odogram based on the same number of measurements but
with X = 0.0 . The indication that a period is present is
better assessed, therefore, by considering zones over which
the values in the depression fall below some selected noise
value for a periodogram rather than just considering any
isolated point value.

The means of 30 repeated runs for N = 15 , 25 and
50 with X = 3.0 are displayed in Fig. 4, together with
the appropriate 99% noise levels. It can be seen that the
half-widths of the minima reduce as N grows. In addition
to the slight increases in depth of the minima with N , it
can also be seen from the 99% noise levels how the power
of detection increases dramatically with N and how the
determined period value becomes better defined.

For any SLLK periodogram providing a well defined
minimum with T (P ) values below some assigned value
associated with an acceptable confidence for a period de-
tection, the progression through the minimum is unlikely
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Fig. 4. Mean periodograms based on 30 generated data sets
with N = 15, 25 and 50 and X = 3.0 demonstrate the nar-
rowing and deepening of the minimum associated with the un-
derlying period, so indicating how period detection improves
with the number of measurements. The T (P ) values associated
with the 99% noise level of the periodograms are indicated,
these giving a better indication of how the power of detection
increases with N .

to be smooth and may display steps because of a slight
over-sampling. In order to determine the best period, the
method proposed by Fernie (1989) may be applied to
provide an interpolated value (based on the algorithm
of Kwee & van Woerden 1956), together with an error
estimate. For the periodograms displayed in Fig. 4, this
method provided values of 1.00186± 0.00095, 0.99960 ±
0.00012 and 1.00027 ± 0.00006 for N = 15, 25 and 50
respectively, the error estimates reducing significantly as
N increases. The accuracy of the period may also be as-
sessed by progressively decreasing the sampling interval
of the trial periods until the T (P ) minimum displays a
flat section; at this stage, the accuracy of the determined
period is of the same order as the periodogram resolution.

An example of a T (P ) periodogram obtained from real
photometric data is given in Fig. 5 for 40 V-band measure-
ments from Moffett & Barnes (1984) (hereafter referred
to as M&B) for the cepheid variable star, AL Vir; a deep
minimum is clearly seen. The method of Fernie (1989)
provides a value of 10.d3154± 0.d0007 comparing with the
value of 10.d302323 listed by M&B. The oscillatory na-
ture of the periodogram over the displayed region results
from sampling and windowing effects associated with the
collection of these data. The periodogram obtained from
matching B-band data is almost identical, confirming this
conclusion. The fact that the level of the periodogram is
generally less than unity is a result of this particular data
set. The depth of the minimum indicates very clearly how
well the periodicity has been detected for this star with
measurements of high X value.
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Fig. 5. The T (P ) algorithm for the 40 V-band measurements
by Moffett & Barnes (1984) of the cepheid variable star,
AL Vir, displays a deep minimum with oscillations resulting
from windowing effects. The period grid was 8.d0 /0.d005 /12.d0
with the deepest minimum occurring at 10.d310 and 10.d315.
Using the procedure advocated by Fernie (1989), the best pe-
riod is 10.d3154± 0.d0007 comparing well with the period listed
by Moffett & Barnes (loc. cit.) of 10.d302323.

4. Multi-parameter data

4.1. General behaviour

For some astronomical investigations, several parameters
may be measured very closely in time or even simulta-
neously. Examples in stellar photometry are observations
made in multi-colour systems such as UBV or UBVIR.
If periodicity is investigated, it is quite usual to exam-
ine the data of one passband or parameter only, perhaps
that carrying the best measurement signal-to-noise ratio
(S/N). Alternatively, the data sets for each colour may
be investigated in turn, with the eventual determination
of a weighted mean period. Although it is feasible to ex-
tend most period search techniques to multi-dimension by
simultaneous analysis of measurements of several param-
eters under a single comprehensive programme, this kind
of approach is not normally effected.

In this section it will be demonstrated that the prin-
ciple of the S–L method as embraced by the SLLK al-
gorithm is readily extendable to time-series analyses of
multivariate data. The development involves calculation
of statistics comprising the combination or “twining” of
“strings” associated with each of the measured parame-
ters to provide “Rope-Lengths” (R–Ls). The concept is
readily appreciated both in visual and physical terms for
two-parameter data, with pairs of measurements obtained
at identical times.

As an illustrative example, consider the V-band data
of AL Vir, used in the production of Fig. 5, in combi-
nation with the complimentary B-band measurements.
The brightness changes in both bands are very signifi-
cant relative to the measurement noise. The simultaneous
V, B magnitude values are plotted against each other in
Fig. 6a and the obvious correlation of behaviour of the two
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Fig. 6. Photometric data from Moffett & Barnes (1984) for the cepheid variable AL Vir made in the V and B bands shows in a)
that the measurements lie on a near elliptical locus, indicating a strong correlation between the variability in the two colours but
with a varying phase difference. The data are connected in order of their collection in b) indicating the large R–L required to
join the measurements in the V B-plane. In c) the connection has been re-ordered according to the period of 10.d3095, this giving
a minimum R–L. If data point connections were to be made on the original period of 10.d302323 (see Moffett & Barnes 1984),
the R–L is less clean and retraces itself at locations of maximum and minimum light. The execution of the locus with time
follows a clockwise progression.

parameters is revealed with a near linear relationship be-
tween B and V . It may be noted that more points appear
at the extreme ends of the plot, as would be expected if a
sinusoidal variation is sampled at random.

In more detail, the data distribution follows a locus
more like that of a neo-ellipse, suggesting that the two-
colour measurements exhibit similar variations but with
a phase difference. The path through the points is akin
to a Lissajou figure produced by compounding measure-
ments of orthogonal oscillatory variations of differing am-
plitude and phase. A strictly linear path indicates that the
two oscillations are permanently in phase with the gradi-
ent determined by their relative amplitudes. Open pat-
terns reveal the presence of phase differences in their be-
haviour. Although not normally depicted in this way, such
behaviour is well known in colour photometry of cepheids
and it can be seen here that at AL Vir’s maximum light
(upper right of Fig. 6) the phase difference between B and
V is small, whereas, at light minimum, the phase differ-
ence is very significant.

The concept of examining data in this way may obvi-
ously be extended to more than two simultaneous mea-
surements with complicated figures being executed in
multi-parameter space.

4.2. The basic RL algorithm

With the measurements mapped as in Fig. 6a, it is readily
appreciated that the data may be linked by “rope” with
various connection paths. For the case involving N mea-
sured pairs of values, m[1]j ,m[2]j , made simultaneously

at times, tj , the immediate R–L value may be written as

N∑
j=1

[((
m[1]j+1 −m[1]j

)2 +
(
m[2]j+1 −m[2]j

)2)1/2
]

where the summation is completed round the full cycle
by letting m[1]N+1 = m[1]1 and m[2]N+1 = m[2]1. If this
were done according to the original data collection order,
the locus connecting the measurements generally involve
many forward and backward movements, requiring a long
R–L to complete the task (see Fig. 6b).

As in the case of the earlier analysis of single parame-
ter data, a grid of periods may be explored such that for
each trial, the measurement pairs are assigned a phase, φj ,
between 0 to 1, according to their measurement times. By
re-assembling the data according to ascending phase val-
ues, they may be re-labelled m[1]i , m[2]i with the change
of subscript indicating their new order. A periodogram
based on R–L values may then be produced by repeating
the phase ordering exercise for each trial period, P , and
determining the appropriate R–L value. Thus, in its basic
form, a two-parameter R–L periodogram may be repre-
sented by

RL(P ) =
N∑
i=1

[((
m[1]i+1 −m[1]i

)2
+
(
m[2]i+1 −m[2]i

)2)1/2
]
· (6)

For the period matching any cyclic variation in the data,
RL(P ) will be a minimum with the locus moving through
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the plotted data from one point to another fairly adja-
cent one; the complete run would move through about
half of the data points in an upward direction followed by
the other half cycle of downward movements (see Fig. 6c).
The process of searching for the period which minimises
the R–L is applicable to any waveform shape contain-
ing only two turning points (i.e. one maximum and one
minimum) within the cycle. The progression rate through
re-phased data point connections simply depends on the
shape of the waveform; comment has already been made
about the bunching of randomly made measurements at
the extremes of a sinusoidal variation.

If the data set comprises several simultaneously mea-
sured parameters, the summation of the vectors joining
the points in multi-parameter space when phased accord-
ing to a trial period is simply

RL(Z,P ) =
N∑
i=1

(
Z∑
k=1

(
m[k]i+1 −m[k]i

)2
) 1

2

(7)

where Z is the number of parameters.

5. The RLLK (Z, P) algorithm

5.1. The general T(Z, P) statistic

Rather than calculating the “true” R–Ls in multivariate
space as in Eq. (7), the R–L may be determined without
taking the square root of each of the contributing vectors.
This may be written simply as

RL2(Z,P ) =
N∑
i=1

(
Z∑
k=1

(
m[k]i+1 −m[k]i

)2
)
. (8)

Because the square root values of the joining vectors are
now not involved, the order of performing the summations
may be relaxed and the R–L may also be rewritten as

RL2(Z,P ) =
Z∑
k=1

[
N∑
i=1

(
m[k]i+1 −m[k]i

)2]
. (9)

Thus, it can now be seen that each contributing summa-
tion to the total sum is the kernel of the original LK S–L
statistic. By normalizing these as in Eq. (3), the statistic
underpinning the RLLK(Z,P ) periodogram may be sim-
ply written as

T (Z,P ) =
Z∑
k=1

T (k, P ) (10)

where the contribution of the kth parameter is calcu-
lated by

T (k, P ) =
(N [k]− 1)

N [k]∑
i=1

(
m[k]i+1 −m[k]i

)2

2N [k]
N [k]∑
i=1

(
m[k]i −m[k]

)2
· (11)

Thus, as demonstrated in Sect. 2, each of the contributing
S–Ls based on Eq. (11) is independent of the number of

contributing measurements, N [k] , and their basic mea-
surement S/N ratio, with a mean value of each T (k, P )
through the periodogram continuum equalling unity. In
order for the RLLK value to be independent of Z , it may
be rewritten as

T (Z,P ) =
1
Z

Z∑
k=1

T (k, P ) (12)

this again having an expected mean value of 1.0 in the
continuum of the periodogram. Combining the individual
S–Ls in this way corresponds to a determination of their
mean with each parameter being ascribed equal weight.
Alternative RLLK determinations may also be considered
with the calculation of a weighted mean according to the
estimated merit of each SLLK component.

Since the SLLK for each parameter is independent
of the number of contributing measurements, a very im-
portant result from Eq. (12) is that a periodogram can
be obtained from combination of multi-parameter data
sets comprising differing numbers of measurements with
records not necessarily obtained at identical times. One
advantage of this is that all the data from a study may be
utilized even if there are recording gaps for some of the
parameters. Combination of such data may reduce sam-
pling and windowing effects that may be apparent if the
reduction is simply limited to those measurements of the
parameters taken at identical times.

In the following section, the behaviour of spot values
from R–L periodograms based on T (Z,P ) as defined by
Eq. (12) are investigated by computer simulation in a sim-
ilar fashion as for SLLK above.

5.2. The behaviour of T(Z, P)

A complete investigation of the behaviour of T (Z,P )
would allow the various parameters to have equal num-
bers of simultaneous measurements, or non-equal numbers
with partial simultaneity, or even with independent mea-
surement times; in addition, the parameters could carry
differing X ratios. For the study here, however, computer
generated data sets were established with the simplifica-
tion of using identical values of X for each parameter
with equal numbers of measurements, carrying identical
times. Multivariate data have been considered with Z =
2, 3 and 5.

As for the single parameter exercise described in
Sect. 3, and following a parallel nomenclature, distribu-
tions for T (Z,P ) and T (Z,P0) were established for each
Z, X and N combination. Mean values, T (Z,P ) and
T (Z,P0) were calculated, together with the lower per-
centiles T [90](Z,P ), T [95](Z,P ), T [99](Z,P ) and upper
percentiles T [90](Z,P0), T [95](Z,P0), T [99](Z,P0).

Again, following the same arguments as for the single
parameter investigation, the way in which the S/N ratio of
the periodogram itself improves according to N together
with the confidence values of a period detection and of a
period not being overlooked, can readily be assessed by
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production of diagrams similar to that of Fig. 2, although
these are not presented here. A summary of the informa-
tion is, however, presented in Table 2. Comparison with
Table 1 shows the general improvement of sensitivity and
the reduced periodogram noise that multi-parameter data
offer.

5.3. Out of phase parameters

Although all the parameters of any multivariate data may
carry the same underlying period, the oscillations may be
out of phase with respect to each other. In some cases, the
periodic behaviour may not be sinusoidal and the phase
differences between the parameters may change over the
period. In order to see the effect that phase difference,
θ , has on T (Z,P ), artificial data were generated for two
measurement parameters (Z = 2) with identical values
for X (=3), but allowing for a constant phase value to
be present between the underlying variations of measure-
ment pairs. The results of the exercise are also summarized
within Table 2.

It can be seen that the power of T (2, P ) increases sig-
nificantly with the phase difference, reaching its maximum
when θ = π/2, with the data producing a circular locus in
the two-dimensional data plane. Beyond this phase value,
the behaviour of the power shows symmetry, with θ = 0
being equivalent to θ = π. Thus, in terms of detection
of periodicity in small amplitude signals, there is positive
advantage in using T (Z,P ) as a means of period detec-
tion.

6. The behaviour of periodograms

6.1. Computer simulations

Simulated data with a normalized period of 1.d0 were gen-
erated for N = 15, 20 and 50 with X = 3.0 in similar
fashion as in Sect. 3.2 but with Z values of 2, 3 and 5.
Individual T (Z,P ) periodograms were very similar to the
investigations of T (P ) in Sect. 3.

Mean periodograms based on 30 repetitions for each
situation were similar in outcome to Fig. 4, but with the
noticeable improvement of a deepening minimum as Z
increases.

6.2. Application of T(Z,P) to real data

Again the data of M&B for the cepheid star, AL Vir,
provide an example for the outcome of the R–L princi-
ple. Trial periodograms based on T (2, P ) , using the B,V
measurements with a range of grids, show that the min-
imum period resolution is ∼0.d0005; the R–L minimum
(flat) occurs for periods of 10.d3085 to 10.d3160, with the
best value being taken as 10.d3120. Using this period, the
data points are linked in Fig. 6c according to phase pro-
gression and show a near-to-perfect connection around an
open locus. The path through the data along the con-
nections executes a clockwise cycle with time. Using the

period of 10.d302323 given by M&B, the linking is less sat-
isfactory around the maximum and minimum values of
the light curve. Inspection of the various trial connections
around 10.d3 shows the importance of obtaining accurate
data around light maximum and minimum. It also con-
firms the notion that the last two decimal places in the
value listed by M&B carry no significance.

Finally, an analysis of observations of M&B for RV Sco
serves as an example of R–L combinations of parameters
for data sets with unequal numbers. Their original table
of measurements show that 25 simultaneously recorded
BVRI values are available with 32 additional BV val-
ues. A period of 6.d061388 is also ascribed. Figures 7a
and 7b display the periodograms over the range 5.d0 to 7.d0
with grid spacing of 0.d005 for the 4-colour and additional
2-colour data respectively. Although the periodogram in
Fig. 7a is noisy, the presence of the period is clearly seen.
Again the period is seen in Fig. 7b but it is obvious that
the data sampling here is not as good as for Fig. 7a. As
a consequence, when the overall summation of T (4, P )
is effected, it is sensible to weight the contributions. For
the example here, this has been done in the ratio of 2:1
respectively for the periodograms of Figs. 7a and b, with
the resulting periodogram displayed in Fig. 7c where it can
be seen that the noise has been reduced relative to that
of Fig. 7a. Further trial analyses showed that the finest
sensible resolution for the period grid is ∼0.d0001 and the
best deduced period is 6.d0608 ± 0.d0002 which compares
with that of M&B but again revealing their exuberance in
quoting an excessive number of decimal places.

7. Application to polarimetry

Measurements of linear polarization automatically consti-
tute two-dimensional data involving the degree of polar-
ization, p, and the position angle of vibration, α. When
plotted in Cartesian space, the measurements may be ex-
pressed in terms of normalized Stokes parameters, q, u,
such that

q = p cos 2α and u = p sin 2α . (13)

There are many astrophysical situations which engender
periodic variations of p and α . Usually the behaviour
of q andu involves a fundamental period and the first
harmonic, both with phase differences, so producing com-
plicated loci in the Stokes parameter diagram. The data
are ideal for undertaking period searches using T (2, P )
or even with dimensions of 2 × Z , if Z bands of multi-
colour data are available. It may be noted that Robert
et al. (1989) made mention of an analysis of Wolf-Rayet
star data based on the Lafler & Kinman (1965) method
but there is no reference as to whether S–Ls were employed
for calculations on the individual Stokes parameters or if
some form of R–L was used on both q and u simultane-
ously.

There are many examples in the literature of polari-
metric data which provide clean loci in the q , u plane with
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Table 2. The improvement in power of the T (Z,P ) algorithm is shown according to the number of measured parameters
Z (= 2, 3 and 5); simultaneous measurements were considered for each parameter with identical X values of 0.5 to 10 (Col. 1).
For each Z and X combination, the value of N and of T (P0) at the cross-over of the latter with the lower percentiles T [99](Z, P ) ,
T [95](Z,P ) and T [90](Z, P ) of the noise associated with a periodogram, are listed, (Cols. 2:3, 6:7 and 10:11). These provide
guides in terms of the number of measurements required for the detection of a period according to the value of X. Similar
cross-over values of N and T [99](Z, P0) are also provided (Cols. 4:5, 8:9, 12:13), these providing guides as to the measurement
number requirements for a period not be missed from any data sample collected at random. The lowest block of the table
provides an example (X = 3.0) of how the power of T (2, P ) improves if there is a phase difference, θ (Col. 1) between the
behaviour of the two measured parameters.

Z = 2 T [99](2, P ) T [95](2, P ) T [90](2, P )

X N T (P0) N T [99](P0) N T (P0) N T [99](P0) N T (P0) N T [99](P0)

0.5 >100 — >100 — >100 — >100 — >100 — >100 —

1.0 33 0.69 >100 — 21 0.71 >100 — 16 0.73 90 0.87

2.0 13 0.48 30 0.63 10 0.56 23 0.68 9 0.62 21 0.72

2.5 12 0.45 22 0.55 9 0.52 19 0.63 8 0.58 16 0.67

3.0 11 0.41 19 0.51 9 0.51 16 0.60 8 0.57 14 0.64

4.0 10 0.38 16 0.45 9 0.49 14 0.55 8 0.54 13 0.60

5.0 10 0.36 15 0.44 8 0.46 13 0.54 7 0.53 12 0.60

10.0 10 0.34 14 0.40 8 0.44 12 0.51 7 0.51 11 0.57

Z = 3 T [99](3, P ) T [95](3, P ) T [90](3, P )

X N T (P0) N T [99](P0) N T (P0) N T [99](P0) N T (P0) N T [99](P0)

0.5 >100 — >100 — >100 — >100 — 77 0.89 >100 —

1.0 26 0.70 94 0.83 17 0.73 74 0.86 13 0.75 64 0.87

2.0 12 0.51 25 0.62 10 0.59 20 0.68 8 0.63 18 0.72

2.5 11 0.45 20 0.56 9 0.55 17 0.63 8 0.60 15 0.68

3.0 11 0.44 18 0.52 9 0.52 15 0.60 8 0.58 14 0.65

4.0 10 0.39 16 0.47 8 0.48 13 0.55 8 0.55 12 0.61

5.0 10 0.37 15 0.44 8 0.47 13 0.54 7 0.53 12 0.60

10.0 10 0.34 14 0.44 8 0.44 12 0.51 7 0.51 11 0.57

Z = 5 T [99](5, P ) T [95](5, P ) T [90](5, P )

X N T (P0) N T [99](P0) N T (P0) N T [99](P0) N T (P0) N T [99](P0)

0.5 >100 — >100 — 66 0.89 >100 — 48 0.89 >100 —

1.0 20 0.72 64 0.81 13 0.75 48 0.86 11 0.78 43 0.87

2.0 12 0.53 22 0.62 9 0.60 18 0.69 8 0.65 16 0.72

2.5 11 0.47 18 0.56 9 0.56 15 0.63 8 0.61 14 0.68

3.0 10 0.43 16 0.51 8 0.53 14 0.60 8 0.59 13 0.65

4.0 10 0.40 15 0.46 8 0.49 13 0.56 7 0.55 12 0.62

5.0 10 0.38 14 0.43 8 0.47 12 0.53 7 0.54 11 0.59

10.0 10 0.34 14 0.40 8 0.45 12 0.50 7 0.51 11 0.57

The effect of a phase difference between the parameters with X = 3.0

Z = 2 T [99](2, P ) T [95](2, P ) T [90](2, P )

θ N T (P0) N T [99](P0) N T (P0) N T [99](P0) N T (P0) N T [99](P0)

0 11 0.41 9 0.51 8 0.57 19 0.51 16 0.60 14 0.64

π/16 11 0.41 9 0.51 8 0.57 19 0.52 16 0.60 14 0.64

π/8 11 0.43 9 0.53 8 0.58 19 0.52 16 0.61 14 0.65

3π/16 10 0.43 8 0.53 7 0.59 18 0.53 15 0.61 14 0.66

π/4 10 0.46 8 0.55 7 0.61 17 0.54 14 0.62 13 0.67

5π/16 10 0.47 8 0.57 7 0.63 16 0.56 14 0.64 13 0.69

3π/8 9 0.49 8 0.59 7 0.65 16 0.58 13 0.65 12 0.69

7π/16 9 0.51 7 0.60 7 0.66 15 0.58 13 0.66 12 0.70

π/2 9 0.51 7 0.61 7 0.67 15 0.59 13 0.66 12 0.71
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Fig. 7. In a) part of the TLK(4, P ) periodogram is displayed based on the 25 BVRI measurements of RV Sco made by Moffet
& Barnes (1984). The periodogram covering the same period interval of some other 32 BV measurements is displayed in b)
revealing the effects of a poorer data sampling pattern relative to that associated with the data used to engender a). By
combining the R–L values with a weighting of 2:1 with respect to a) and b) respectively, a less noisy periodogram is produced
and displayed in c), using all of the data in the best way. From exercises with higher resolution than displayed above, the best
period for RV Sco is 6.d0608 ± 0.d0002.
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Fig. 8. In a) the U band data for U Mon in the Stokes parameter plane are displayed with the q, u points (measured in %)
connected in order of their collection. The typical quality of the data is depicted by a point (not part of the data) at the left
of the diagram carrying 1σ error bars. The periodogram based on T (2, P ) for these data is displayed in c) and shows minima
at ∼90 days and 178 days. By phasing the measurements on the best period of 89.d68, re-ordered connections are made in b);
although a smooth locus is not apparent, the process removes the forwards and backward movements across the central part of
the data distribution.

a cyclic path (see, for example, Drissen et al. 1986), for
which the T (2, P ) would have obvious success in deter-
mining the period. To serve as an example here of the
effectiveness of the algorithm, data have been taken from
Serkowski (1970) for the RV Tauri star, U Mon. In discus-
sions of polarimetry, it has always been assumed that the
period held in these data is the same as that established
from photometry and spectroscopy. The data comprise 37

U band values, 51 for the B band and 39 for the V band.
Figure 8a displays the U band measurements in the from
of a q , u plot.

The measurements for each colour were analyzed by
T (2, P ) in turn with a period grid of 0.d02, providing min-
imum R–Ls at 89.d68, 91.d08 and 92.d78 in the U, B and V
bands respectively. The U band periodogram, with a grid
of 0.d5, is shown in Fig. 8c and displays the presence of
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an additional minimum at close to 2× the fundamental
(∼178 days). This may result from the intrinsic noise of
the star; Serkowski (1970) commented that the amount of
intrinsic polarization of U Mon changes considerably from
cycle to cycle, whereas the angle of the direction of vi-
bration behaves similarly in each cycle. Alternatively, it
might be related the double periodicity behaviour seen in
the photometry of these stars, with light curves exhibiting
alternate deep and shallow minima.

When the colour data were lumped together and the
exercise applied to the 6 parameters simultaneously with-
out weighting, the determined period was 92.d78. The pho-
tometric period suggested by Preston et al. (1963) was
92.d23 but based on on additional photometry conducted
at the same time as the polarimetry, Serkowski (1970) sug-
gested a period of 91.d3. The variations in the quoted pe-
riod probably reflect the presence of intrinsic fluctuations
superimposed on the basic period.

Figure 8b displays the data point connections when
their order is re-adjusted according to the ascribed phase
defined by the period. Although the connections do not
follow a smooth locus, it may be noted that the frequency
of crossing the central part of the data distribution has
been reduced by the procedure, as would be expected from
data following a near elliptical locus with a noisy perime-
ter. The overall behaviour of the analysis is consistent with
the star exhibiting fluctuations in p as the position an-
gle of the polarization sweeps around from 0 to 2π, the
whole pattern being offset from the q , u plane origin by
a constant interstellar component.

8. Conclusions

By applying a normalizing factor of (N − 1)/2N to the
original Lafler & Kinman (1965) statistic, it has been
demonstrated that the “String-Length” method of LK has
been regularized. As well as being independent of the S/N
ratio of the basic measurements, SLLK is now independent
of the number of measurements in any examined data set.
Any periodogram, T (P ), based on its evaluation at each
trial period, should have a mean level of 1.0.

If periodicity is present, the depth of the associated
minimum in the periodogram for a given number of mea-
surements depends only on the amplitude-to-noise ratio of
the measurements. Such an attribute makes the determi-
nation of confidence levels on any period detection straight
forward. This might be done with reference to artificial
data according to the exercises outlined in the paper or
the behaviour of the periodogram may be examined by
replacing the measurements for each timed record with
computer generated values which simply carry noise or a
sinusoidal signal with some given amplitude-to-noise ra-
tio; repetitive exercises of this kind allow confidence levels
to be assigned to any outcome.

It has also been demonstrated that the regularized
SLLK algorithm is applicable to examining multivariate
data for which the parameters may, or may not, be mea-
sured simultaneously, so extending the “String-Length”

principle to the notion of a “Rope-Length”. Combination
periodograms based on measurements of several param-
eters may be constructed by weighting the contributions
from the different parameters according to their estimated
importance. Such RLLK combinations, with or without
weighting, should improve the overall periodogram by re-
ducing the effects of sampling that will be apparent on
each measured parameter. It is also interesting to note
that the RLLK principle can be applied very effectively
when there are phase differences between the underlying
behaviour of the different parameters. Again, with refer-
ence to exercises involving artificial data, the regularized
form of T (Z,P ) is readily amenable to the determination
of confidence levels associated with a detected period or
with a null outcome.

The efficacy of T (Z,P ) with respect to simultaneous
2-colour measurements of a cepheid star, to multi-colour
measurements a cepheid with data sets of unequal size,
and to an RV Tau star displaying periodic polarization
variations, has been clearly demonstrated. In summary,
T (Z,P ) has obvious applications to the analysis of multi-
colour photometry and polarimetry. It may be noted that
in a study of the polarimetric behaviour of O-type stars,
a joint period analysis involving spectral line equivalent
width data and broad-band polarimetry has been under-
taken by Clarke et al. (2002). As an extreme parameter
combination, although an example was not provided here,
the method could be used to investigate periodicity in data
say from X-ray, optical and radio measurements obtained
contemporaneously but not necessarily simultaneously.
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