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Oscillations on the Sun in regions with a vertical magnetic field
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Abstract. We have calculated the spectrum of eigenmodes of umbral oscillations. The eigenmodes of oscillations
with periods from several tens of minutes (g-modes) to several tens of seconds (p-modes) have been found. It is
shown that the 3-min umbral oscillations are p-modes modified by the magnetic field.
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1. Introduction

In the beginning of the 70s the discovery of sunspot um-
bral oscillations (Bhatnagar et al. 1972; Giovanelli 1972;
Beckers & Schultz 1972; Bhatnagar & Tanaka 1972) at-
tracted attention of many theorists, as it seemed that
the umbral oscillations could provide unique information
about the sub-photospheric structure of sunspots.

For years, two basic approaches have been used to
study oscillations in sunspots (see the reviews by Staude
1999 and Bogdan 2000). Starting from the study of Uchida
& Sakurai (1975), the spectrum of eigenmodes of umbral
oscillations has been calculated (Scheuer & Thomas 1981;
Thomas & Scheuer 1982; Zhukov et al. 1987; Wood 1990,
1997; Hasan 1991; Cally & Bogdan 1993; Cally et al. 1994;
Bogdan & Cally 1997; Gore 1997, 1998; Lites et al. 1998).
In the second approach, Z̆ugz̆da et al. (1983, 1984, 1987);
Settele et al. (1999) (see also Gurman & Leibacher 1984)
calculated the coefficient of the transmission for a lon-
gitudinal wave mode excited by broad-band noise from
the deep layers of the convective zone. However, it fol-
lows from the paper of Zhukov & Efremov (1988) that
these two approaches are essentially equivalent, provided
the sunspot umbra contains a resonator from which wave
energy can leak. It should be noted, however, that two
factors affect the calculated transmission coefficient of the
longitudinal wave mode: the partial reflection of the wave
and the partial transformation of the longitudinal wave
into transverse wave mode. These factors may result in
the situation where the transmission coefficient of the lon-
gitudinal wave is a monotonous function of frequency (see
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Fig. 1 in the study of Zhukov & Efremov 1988, and also
the study of Settele et al. 1999). In this case, the pres-
ence of a resonator for the transverse wave mode in the
sunspot umbra can be indicated only by the frequency
dependence of the coefficient of transformation of the lon-
gitudinal wave mode into the transverse mode (Fig. 4 in
the study of Zhukov & Efremov 1988). Thereby, the res-
onance frequencies cannot always be determined only by
calculation of the transmission coefficient of the longitu-
dinal wave mode. That is why in the present study we use
the first approach, which while being substantially sim-
pler, unfortunately, does not provide detailed information
about linear transformation of waves in a sunspot umbra.

The first and the most consistent attempt to give phys-
ical interpretation of the observed oscillations was made
by Scheuer & Thomas (1981). They tried to calculate the
spectrum of umbral eigenoscillations in sunspots by solv-
ing the complete linearized set of equations of magnetohy-
drodynamics. However, as the authors themselves noted,
they were not able to find asymptotic solutions for this set
of equations for z → −∞. In their calculations they used
some conditions for sufficiently deep layers of the umbra
which in fact did not take into consideration the presence
of the convective zone. As a result, Scheuer & Thomas
(1981) did not succeed in finding any eigenmodes trapped
in the convective zone.

Here we assume that in sufficiently deep layers of
umbra, the Alfvén speed is considerably less than the
sound speed. In the weak field approximation (vA/c �
1), the full set of equations of magnetohydrodynamics
proved to be divided into two independent subsystems
whose asymptotes can be easily obtained (Sect. 3, see also
Hasan & Christensen-Dalsgaard 1992 (for the isothermal
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atmosphere) and Cally & Bogdan 1993; Cally et al. 1994;
Bogdan & Cally 1997 (for the polytropic atmosphere))
and, hence, the problem of calculation of the eigenmodes
of the umbral oscillations can be completely defined.

The calculations made under the conditions on the in-
finity (for z → −∞) obtained in Sect. 3 have shown that
the eigenmodes of the umbral oscillations display periods
from several tens of minutes (g-modes) to several tens of
seconds (p-modes), and that both the 5-min and 3-min
oscillations are eigenmodes of the umbral oscillations.

2. The basic equations and the model of umbra

Let us assume that the magnetic field is homogeneous
and vertical (H0 = (0, 0,H0)). Then for an ideal gas,
assuming that all small perturbations have the form
∼exp(kxx + kyy + ωt), after linearization the basic set
of equations of magnetohydrodynamics is reduced to two
independent subsystems, one of which describes the prop-
agation of Alfvén waves (here it will not be considered),
and the other the propagation of magneto-atmospheric
waves. It has the following form in a cartesian system of
coordinates with the Z-axis directed upwards (Ferraro &
Plumpton 1958)

v 2
A
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(
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2
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)
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where c = (γRT (z))1/2 is the sound speed, γ the ratio of
specific heats, g the gravity acceleration, which is assumed
to be constant (=0.274 kms−2) and vA = (H2

0/4πρ)1/2 the
Alfvén speed.

The system (1)–(2) is a rather complicated set of equa-
tions; its solutions have been studied in detail only for an
isothermal atmosphere (Ferraro & Plumpton 1958; Lerroy
& Schwartz 1982; Zhugzhda & Dzhalilov 1982).

In our opinion, at the present stage, until the origin of
the umbral oscillations has been ultimately determined,
the problem should not be complicated with attempts to
describe the structure of the atmosphere of a sunspot um-
bra with all possible accuracy (for example, with the use of
semi-empirical models). Therefore, in the present study we
solve the set of Eqs. (1)–(2) numerically for the model of
umbra similar to that used by Scheuer & Thomas (1981).
We assume that our umbra model is a two-layer atmo-
sphere. The sound speed and density in each layer are
given as follows:
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Layer 2 (Convective zone, z < 0)
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3. Asymptotic solutions of the basic equations

In most studies, zero boundary conditions were used in
the calculation of the spectrum of eigenmodes of umbral
oscillations. In fact, however, (see Zhukov & Efremov 1988;
Cally & Bogdan 1993; Cally et al. 1994; Bogdan & Cally
1997; Lites et al. 1998; Settele at al. 1999), in order to
correctly carry out the numerical integration of the set of
Eqs. (1)–(2), it is necessary to know the asymptote of its
solutions both in the corona (at z → +∞) and convective
zone (at z → −∞).

As it was mentioned above, the solution of the sys-
tem of Eqs. (1)–(2) is well known for the isothermal at-
mosphere; in particular, the asymptotic solutions of this
system at z → +∞ which are necessary for our purposes
have the form (Leroy & Schwartz 1982):
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The following notations have been used here:

k = kx, K = kH∞, Ω =
ωH∞
c∞

and v = ivx,

where H∞(=c2∞/gγ) is the scale height at z → +∞.
Let us find asymptotic solutions of the system (1)–(2)

in the deep layers of umbra (z → −∞). As the sound
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speed and density increase with depth, it is obvious that
in sufficiently deep layers of the umbra, the Alfvén speed
becomes far smaller than the sound speed. Therefore, let
us introduce a small parameter ε = vA(za)/c(za), where za

is the depth, at which ε � 1. Then seeking the solutions
of this system in the form of the series:

vx = e
1
ε

∫
z
λ(ζ)dζ (vx0 + εvx1 + ε2vx2 + . . .

)
, (3)

vz = e
1
ε

∫ z
λ(ζ)dζ (vz0 + εvz1 + ε2vz2 + . . .

)
, (4)

substituting series (3)–(4) into the system (1)–(2), and
equating terms of the order of 1/ε2, we obtain:

vz0 = 0, λ2 6= 0,

vz0 6= 0, λ2 = 0.

For the first case, it is easy to find:

vx ∼
√
vA e±i

∫
z ω
vA

dz
. (5)

It is not difficult to see that these solutions represent slow
magnetoacoustic waves.

In the second case, the following equation for vz0 is
obtained:
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As the solutions of the Eq. (6) for the layer 2 are well
known (Nye & Thomas 1976; Evans & Roberts 1990) they
will not be discussed here.

4. Dispersion relation

Now, for the problem to be formulated completely it is
necessary to find a dispersion relation which specifies the
spectrum of umbra eigenoscillations. For this purpose,
conditions on the boundary of discontinuity at z = 0 must
be found. The conditions on the boundary of the disconti-
nuity in a medium with a vertical magnetic field has been
considered in a number of studies (see, for example, Leroy
& Schwartz 1982); they have the form

[vz ] = 0, [H ] = 0, [p ] = 0. (7)

Thus on the boundary of the discontinuity, the vertical
component of the velocity, magnetic field, and pressure
should be continuous.

Taking into account the fact that in the corona (at
z → +∞) the exponential decaying solution (vz1t) and
the solution corresponding to upwards propagated slow
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Fig. 1. Variation of the sound speed with height in the umbra.

magnetoacoustic waves (vz2t) should be taken, for layer 1
(z > 0) we have

vz = T1vz1t(z) + T2vz2t(z)

(two linearly independent solutions of the set of
Eqs. (1)–(2)).

In deep layers of the convective zone it is necessary to
take the exponential decaying solution of the Eq. (6) (vz1b)
and the solution for downwards propagated slow magne-
toacoustic waves (5) (vz2b) and for the layer 2 (z < 0) we
have

vz(z) = B1vz1b(z) +B2vz2b(z)

(as well as the two solutions from four linearly independent
solutions of the set of Eqs. (1)–(2)).

Thus, from the boundary conditions (7) the follow-
ing set of equations for the definition of arbitrary con-
stants T1, T2, B1 and B2 is obtained:

B1vz1b(0) +B2vz2b(0) = T1vz1t(0) + T2vz2t(0)

B1v1b(0) +B2v2b(0) = T1v1t(0) + T2v2t(0)

B1φ1b(0) +B2φ2b(0) = T1φ1t(0) + T2φ2t(0)

B1ψ1b(0) +B2ψ2b(0) = T1ψ1t(0) + T2ψ2t(0),

here

φ =
dvz
dz

, ψ =
dv
dz
·

The determinant of the system is the dispersion rela-
tion which specifies the spectrum of the umbral oscilla-
tions. For a determination of eigenfrequencies, the set of
Eqs. (1)–(2) was numerically integrated from z = 35z1 up
to z = 0 and from z = −(40÷ 85)z2 up to z = 0.

5. The results of the calculations

To compare our results with observations, we adopt the
following numerical values for the parameters in our um-
bral models: H0 = 1000G, ρ0 = 5×10−7 g cm−3, γ = 5/3,
α = 3.5, β = 4., δ = 220, c01 = 7.9 km s−1. The variation
of the sound speed and density with height for the chosen



656 V. I. Zhukov: Sunspot umbral oscillations

4 2 0 -2 -4 -6 -8 -10
10-15

10-13

10-11

10-9

10-7

10-5

de
ns

ity
 (

g 
cm

  -
3 )

z (Mm)

Fig. 2. Variation of the density with height in the umbra.
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Fig. 3. Diagnostic diagram for the sunspot umbral oscillations.
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Fig. 4. Diagnostic diagram for the umbral oscillations without
magnetic field.

values of the parameters and for z1 = 500 km is presented
in Figs. 1 and 2.

The diagnostic diagram for the umbral oscillations
presented in Fig. 3 was calculated for

c01 = c02, ρ1(0) = ρ2(0) = ρ0 and z2 = 250 km.

We can see from Fig. 3 that in the sunspot umbra, as
well as on the Sun on the whole, there exist both g-modes
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Fig. 5. Variations of frequencies of the f and pn- modes (n ≤ 4)
with the magnetic field for k = 1.1 Mm−1.

and p-modes of the eigenoscillations. We have computed
two first g-modes, f and several first p-modes with periods
from several tens of minutes to several tens of seconds. For
comparison, Fig. 4 presents the diagnostic diagram calcu-
lated for the same values of parameters only without the
magnetic field (H0 = 0). The comparison of these diagnos-
tic diagrams indicates that the presence of a sufficiently
strong magnetic field weakly affects the f , p1, p2 and p3-
modes, however, it results in new modes emerging in the
region of high frequencies. In Fig. 3, new modes caused
by the presence of a strong magnetic field are marked by
dotted lines. Apparently the presence of the strong mag-
netic field results in splitting of the p-modes with large n
(n > 4) into two modes, one of which represents a slow
MHD wave, and the other a fast MHD wave. The problem
of high-frequencies p-mode splitting in a strong magnetic
field of the sunspot umbra undoubtedly requires special
investigation. As for the impact of the magnetic field on
the f and several first p-modes, the strength of the mag-
netic field does not affect them appreciably, as we can see
from Fig. 5.

The calculated eigenperiods of the umbral oscillations
(see Fig. 3) for two values of the wave number (i.e., in fact,
for two sunspots of different size) and the observed peri-
ods of the oscillations taken from the study of Thomas
et al. 1984) are presented in Table 1. We can see from
Table 1 that despite the rather arbitrary choice of some
parameters for the sunspot umbra in our calculations (e.g.,
the parameter α, which essentially specifies the height
of the transition region, or the magnitude z2 which, as
our calculations have shown, strongly influences the spec-
trum of oscillations), the calculated values of the periods
are generally close to those observed. It thereby follows
from the obtained results that both the 5-min and 3-min
oscillations in the sunspot umbra are the eigenmodes of
umbral oscillations. It is necessary to note, however, that
the 3-min umbral oscillations are high-frequencies p-modes
(with n > 4) appreciably modified by the magnetic field.
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Table 1. Calculated and observed periods of the umbral oscil-
lations.

mode k = 0.9 Mm−1 k = 1.1 Mm−1 Obs.

(s) (s) (s)

g2 51.5 (min) 44.0 (min) -

g1 28.4 (min) 24.9 (min) -

f 392 352 366

p1 246 225 301

p2 201 195 270

p3 186 172 197

p4 168 154 171

p5 164 139 155

6. Conclusion

It follows from the asymptotic solutions of the sys-
tem (1)–(2) (Sect. 3) that energy can leak from the
sunspot umbra to the corona and deep layers of a sunspot
in the form of slow MHD waves. The radiation of the waves
to the corona and deep layers of a sunspot implies that the
eigenfrequencies of the umbral oscillations must be com-
plex (ω = ωr + iωi) (see Zhukov & Efremov 1988; Cally
& Bogdan 1993; Bogdan & Cally 1997), and therefore the
results obtained in the present paper are reliable provided
that ωi/ωr � 1, i.e. the leakage of the wave energy from
the umbral resonator is sufficiently small. In this case, as
shown for example by Zhukov (2001), the leakage of the
wave energy from the umbral resonator (ωi 6= 0) should re-
sult in minor change of ωr, which as a first approximation
can be neglected. Moreover, the initial assumption ωi = 0
accepted while calculating eigenfrequencies for g, f and
p-modes can be shown to be actually valid, taking into ac-
count conditions at infinity (z → ±∞) derived in Sect. 3.
However, it follows from the study of Zhukov & Efremov
(1988), in which the spectrum of eigenoscillations of the
sunspot umbra was calculated (in the approximation of
an incompressible medium, which, generally speaking, is
applicable only to the f -mode), that the radiation of the
wave energy from sunspots can be substantial (see also
Cally & Bogdan 1993; Bogdan & Cally 1997) and there-
fore it is very important to take into account the leakage
of wave energy from the sunspot umbra in calculations. In
addition to that, in order to achieve the best consistency
between calculations and observations, it is necessary to
calculate the spectrum of the umbral oscillations for the
various z2 which dramatically affect both f and several
first p-modes.

We note in conclusion, that since open boundary
conditions are acquired for the umbra, the umbral
oscillations (at least within the 3-min band) may be ex-
cited by the mechanism suggested by Z̆ugz̆da et al. (1983).

We consider, however, that generation of oscillations in
sunspots constitutes a rather complicated problem, which
will require substantial effort in order to be resolved.
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