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Abstract. Semi-analytic models of X-ray clusters and groups of galaxies, relying on the idea that there was a non-
gravitational energy injection in these systems, are able to reproduce many observed correlations, in particular
the LX−T relation and the “central entropy floor” in groups. Limiting models exist which describe the behaviour
of clusters and groups separately, but no analytic modeling has yet been found to unify both mass ranges. It is
the aim of this paper to provide such an analytic model. Our description relies on a now standard description
of the shock thought to occur in these systems near the virial radius (Cavaliere et al. 1998), the isothermality
and spherical symmetry of the intracluster medium, as well as the reinterpretation of observed quantities (like
the X-ray luminosity, the gas mass MICM and the central SZ effect y0) in terms of the specific entropy. This
allows the derivation of analytic expressions for several observed correlations (LX − T , MICM − T , y0 − T ,...)
and their normalisation encompassing both the group and the cluster regimes. The analytic predictions compare
very well with observations, as well as with more elaborated semi-analytic schemes. This agreement allows a
reinterpretation of the LX − T relation (via the quantity LX/T

7/2) and the y0 − T relation (via y0/T
5/2) as

indirect measures of the non-gravitational entropy content of groups and clusters of galaxies. We emphasize the
need for shock heating, even in the group mass range: shocks can not be completely suppressed in groups (and
thus groups can not be entirely isentropic) unless an unacceptably high entropy floor is needed in order to break
the self-similarity in the LX − T relation. Our model shows that the normalisation of the entropy after the shock
(which is mass-dependent) is a key ingredient and that this quantity alone can explain the shape of the observed
correlations between integrated X-ray and SZ quantities over and below 2 keV.

Key words. hydrodynamics – shock waves – galaxies: clusters: general – X-rays: galaxies: clusters – cosmology:
large-scale structure of Universe

1. Introduction

For ten years, it has been known that X-ray observations
of clusters of galaxies can not be reproduced in simple self-
similar models, where the central gas density is propor-
tional to dark matter density. Kaiser (1991) and Evrard
& Henry (1991) advocated a preheating of the gas before
it fell into the cluster potential to recover the observed cor-
relations. Later, X-ray observations of groups of galaxies
have strengthened the case for a non-gravitational entropy
injection in these systems, in particular by the observa-
tion of the so-called “entropy floor” (Ponman et al. 1999).
These authors showed that the central entropy level in
groups (outside the cooling-flow radius) is higher than the
level the sole cosmological shocks can provide, while being
well in accord with adiabatic numerical simulations (e.g.,
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including no dissipative physics) in clusters. This entropy
injection could be due to supernovae explosions (the so-
called feedback from star formation) or other sources as
active galactic nuclei. Several semi-analytic schemes that
elaborate on this idea have been proposed to reproduce
the curvature of the LX − T relation in the groups’ mass
range (where the effects of the preheating are thought to
be the highest, see Cavaliere et al. 1997; Bower 1997;
Valageas & Silk 1999; Valageas & Schaeffer 2000; Wu
et al. 2000; Bower et al. 2000). In particular, Cavaliere
et al. (1997, 1998, 1999, hereafter CMT) have introduced
a simple model, where the bending is provided by the dif-
ferential strength of a shock occurring at the virial ra-
dius in a preheated gas. Their description relies on the
physical modeling of the shock interface, using Hugoniot
relations, and reproduces naturally the central observed
entropy floor. While this model highlights the important
role of shocks and entropy floor in the formation of clusters
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and groups, no analytic description of the X-ray observed
relations has yet been found to encompass both groups
and clusters. The aim of this paper is to present such a
model and compare it to observations.

However, despite the success of these semi-analytic
schemes when confronted with observations, difficult prob-
lems remain, as for example the fact that a reheating by
supernovae (hereafter SN) explosions requires an incredi-
bly high efficiency of the transfer of energy from SN rem-
nants to the intergalactic medium (Valageas & Silk 1999;
Bower et al. 2000). In particular, the cooling of the SN
remnants will obviously decrease this transfer efficiency,
and must be ignored in these models. While a combination
of SN and quasars (hereafter QSOs) reheating is probable
and would alleviate this problem, Bryan (2000) has pro-
posed that differential galaxy formation between groups
and clusters (which would lower the central entropy in
groups and allow higher entropy gas to flow into the cen-
ter) can explain the curvature of the LX − T relation and
the entropy floor. However, it is well known that with-
out preheating, most of the available gas in the universe
would have formed stars today, which is not observed (this
the so-called “overcooling problem”, see Blanchard et al.
1992; Balogh et al. 2001). This much-needed feedback in
galaxy formation would certainly have an impact on the
formation of clusters and groups. Valageas & Silk (1999)
have indeed shown that galaxy and cluster feedback differ-
ing requirements are likely to provide a tight constraint on
the amount of preheating in the universe. But, even in the
preheated scenarios, there is actually no consensus on the
entropy injection epoch. While most of the studies have
focussed on “external preheating” models (where the en-
tropy injection occurs before the formation of groups and
clusters e.g., before the gas is compressed by shocks) be-
cause low density gas requires much less energy than high
density one to be raised to a given entropy level (and also
because the star formation rate seems to peak rather early
in the universe evolution), Loewenstein (2000), from a se-
ries of approximate static hot gas models and Brighenti
& Mathews (2001), from 1D numerical simulation with
cooling, mass dropout and star formation feedback, have
argued that most of the heating occurred during or after
the assembly of the group or cluster gas. The efficiency
problem of SN explosion is still present, but can be allevi-
ated by an initial mass function flatter than the Salpeter
one (Brighenti & Mathews 2001). These are the so-called
“internal preheating” models.

In this paper, we focus explicitly on an external
preheating model. Internal preheating models require
spatially-dependent and time-dependent star formation
rates to provide the amount of injected entropy, while ex-
ternal preheating models only require the level of entropy
before the gas falls in a cluster or a group. This simplifica-
tion allows us to obtain a completely analytic model that
describes both groups and clusters.The physical approach
we follow consists of deriving scaling relations, e.g. LX−T ,
y − T , y − LX by linking these observed quantities to the
specific entropy profile in the system. For this purpose we

first derive an analytic expression for the entropic profile
normalisation at the virial radius of clusters and groups
by discussing shocks, as in CMT. Using this relation we
then derive analytically the relevant scaling relations and
compare them to data. Following Tozzi & Norman (2001),
we highlight the key role of entropy and argue that it in-
deed constitutes the best observable in clusters, allowing
to derive analytical expressions for standard X-ray and
Sunyaev-Zeldovich (hereafter SZ) correlations. This leads
us to reinterpret these relations in terms of global entropy
content in a well physically motivated manner.

The plan of the paper is as follows: in Sect. 2, we
present the shock model and derive an expression for the
normalisation of the entropy profile at the virial radius.
This expression, containing a free normalisation, is fitted
to observations. In Sect. 3, we relate the X-ray luminosity
to the entropy profile and derive an analytic expression for
the shape of the LX − T relation, which is subsequently
compared to observations using only the fitted parame-
ter of the last section.. The same method is followed in
Sects. 4–6 to obtain analytic expressions for the MICM−T ,
fgas − T , y0− T and y0 −Lx correlations (where MICM is
the gas mass, fgas is the gas fraction and y0 is the central
Compton parameter). In each of these parts, we provide
a detailed comparison with previous work. Section 7 dis-
cusses a reinterpretation of these correlations in terms of
the total entropy content in groups and clusters, tests it
using a semi-analytic model and discusses the main hy-
potheses we make. Moreover, a comparison of our results
for the entropy floor with other theoretical models is made.
Section 8 summarises the present work and concludes. We
also compute the numerical values of the normalisations
of the correlations found and summarise all these results
in Appendix A, allowing them to be easily used in another
context. Appendix B computes the infalling velocity as a
function of the mean mass of the system and compares it
to hydrodynamic simulations. Finally, Appendix C, intro-
ducing a simple model for the entropy profile of groups,
computes the shape factors appearing in the different nor-
malisations.

Unless otherwise stated, we use H0 =
100h2/3 km s−1 Mpc−1 with h2/3 = 2/3, which gives
approximately H0 = 67 km s−1 Mpc−1. We rescale all the
data used in this paper to this value.

2. Entropy and shocks in clusters and groups

The study of the equilibrium state of X-ray clusters and
groups of galaxies requires the physical description of
the complex interplay between baryonic and non-baryonic
dark matter. To tackle this problem analytically requires
several simplifying hypotheses. The following assumptions
are reasonable and will be thus assumed henceforth (see
Sarazin 1988, for a review and a discussion of the main
assumptions).
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First, the hot and diluted plasma of ions and electrons
constituting the intracluster medium (hereafter ICM) is
treated as a single species perfect gas satisfying

P =
ρkT

µmp
, (1)

where P , ρ, T denote respectively the pressure, density
and temperature of the baryonic gas, while k and µ de-
note respectively the Boltzmann constant and the mean
mass per proton. Second, neglecting the ICM mass with
regards to the DM mass, and assuming stationarity (no
gravitational potential variation on time scales smaller
than the hydrodynamic time scale, e.g. no recent merg-
ers), the ICM is assumed to be in hydrostatic equilibrium
(hereafter HSE) in the dark matter gravitational poten-
tial φ. We can thus write the continuity and the Euler
equation as follows:

∇(ρv) = 0 (2)

∇P = −ρ∇φ (3)

where v is the gas velocity and φ the gravitational po-
tential. Equations (2), (3) and (1), together with the en-
ergy conservation equation and Poisson equation (the use
of which can be avoided if an approximate analytic ex-
pression for φ is chosen, e.g., neglecting the gravitational
contribution of the baryons) form a closed set of equa-
tions, whose resolution provides the radial profiles of all
the quantities of interest in the gas.

To solve this set, boundary conditions are required. In
the present paper, we are interested in the variations of
these boundary conditions with the total mass of the sys-
tem (or equivalently with its mean temperature). Indeed,
the previous equations will describe the equilibrium of
baryonic gas in the underlying potential, whatever the to-
tal mass of the system. We argue and show in the following
that changes in the boundary conditions, when explicitly
written as a function of the mean temperature, allow us
to derive the change in global correlations, such as the
LX − T relation, on a scale going from clusters to groups
of galaxies. For this purpose, we use the fact that the flow
of gas on a cluster becomes supersonic in the vicinity of the
virial radius rv (Teyssier et al. 1997). We will then show
that a standard modeling of the resulting shock (following
CMT) leads to the appropriate boundary conditions. We
will consider hereafter that the boundary conditions take
place after the last major merger of the system, as appro-
priate in a hierarchical picture of structure formation.

The last hypothesis we will use is that within the
virial radius, the ICM is isothermal. This hypothesis will
not be used in the derivation of the boundary conditions
(Sect. 2.1) but in the derivation of the global correlations
in groups and clusters (Sects. 3 and 5). Both observations
Markevitch et al. (1998) and simulations (Teyssier 2001)
show that this approximation is good into a factor two
and is thus sufficient for our purpose.

Finally, let us recall an hypothesis necessarily under-
lying every work published using the entropy of the ICM,

but rarely stated: the local thermodynamic equilibrium
hypothesis (hereafter LTE). By definition, in a state of
global thermodynamic equilibrium, temperature and pres-
sure (and thus density) are constant throughout the sys-
tem, and the state functions of the system (e.g. entropy)
have a determined dependency on the state variables cho-
sen (and so a fixed value). In the LTE however, temper-
ature and pressure can vary from point to point (as is
obvious in clusters from X-ray observations for example)
and, locally only, the system is in thermodynamical equi-
librium. Thus, the state functions have the same depen-
dency on state variables as in global equilibrium, but vary
now from point to point as do the latter. Note that this
hypothesis is likely to break down at smaller scales than
the ones of interest to us, due to turbulence or magnetic ef-
fects. This hypothesis is crucial if we want to use the usual
analytic expression of the specific entropy of the ICM, s,
defined as

s = S/cv = ln
(
kT

ργ−1

)
(4)

where γ is the polytropic index of the gas. The thermo-
dynamical state of the gas is fully known as soon as the
entropy profile of the gas is known. Since we want to high-
light the key role of entropy as “an observable” we choose
to describe the physical state of clusters in terms of en-
tropy, or more appropriately and equivalently in terms of
the adiabat, defined as

K = (µmp)γ−1 es =
kT

nγ−1
= (kT )n−2/3 , (5)

where n = ρ/(µmp). In the following, T will denote the
temperature in keV (i.e., we will replace everywhere kT
by T ). Note that from now on the polytropic γ index will
be fixed to its standard value of 5/3. The definition of the
adiabat differs from the widely used definition of Balogh
et al. (1999) (by a constant factor (µmp)γ−1) but allows
a direct comparison to observations.

2.1. A general shock model

We first aim at deriving adiabat boundary conditions
based on the Rankine-Hugoniot relations, used in the same
form as CMT.

2.1.1. The Rankine-Hugoniot relations

Let the infalling gas velocity reach the sound speed at r =
rv and consider subsequently that a shock forms at this
radius. Let the temperature, the density and the velocity
of the infalling gas before the shock be respectively T1,
n1 and v1, and the post-shock temperature, density and
velocity be T2, n2 and v2. If the shock efficiency is very
high, i.e. the post-shock velocity v2 is null in the rest-
frame of the cluster center of mass, the Rankine-Hugoniot
relations yield (see CMT):

kT2 =
µmp v

2
1

3
F (ε), (6)
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with

F (ε) =
(1 +

√
1 + ε)2

4
+

7
10
ε− 3

20
ε2

(1 +
√

1 + ε)2
(7)

and

ε =
15
4

kT1

µmp v2
1

· (8)

At the same time, the ratio between post-shock (n2) and
pre-shock (n1) density is given by:

n2

n1
= 2

(
1− T1

T2

)
+

[
4
(

1− T1

T2

)2

+
T1

T2

]1/2

. (9)

Note that since the ICM within rv is assumed to be
isothermal, its temperature is equal to the temperature T2

after the shock.
Using the formulas above, we will now derive a gen-

eral expression for the adiabat jump at the shock, which
will depend on the system mean temperature. This virial
adiabat normalisation will provide us with the change in
the boundary conditions necessary to describe groups and
clusters in a unique analytic model.

2.2. The adiabat after the shock

To find a general expression for the post-shock adiabat,
we first express the ratio T1/T2 as a function of ε:

T1

T2
=

4
5

ε

F (ε)
· (10)

Introducing this expression in Eq. (9), one has:

n2 = 2n1

((
1− 4

5
ε

F (ε)

)

+

[(
1− 4

5
ε

F (ε)

)2

+
ε

5F (ε)

]1/2)
. (11)

Using then Eqs. (6), (8) and (11), the post-shock adia-
bat K2 is easily expressed as a function of the pre-shock
adiabat K1 and ε in the following manner:

K2 =
k T2

n
2/3
2

=
5

28/3
K1H(ε), (12)

where

H(ε) =
F (ε)
ε

((
1− 4

5
ε

F (ε)

)

+

[(
1− 4

5
ε

F (ε)

)2

+
ε

5F (ε)

]1/2)−2/3

. (13)

Even if this last expression looks complicated, it can be
straightforwardly expanded in a Laurent series in the
vicinity of ε = 0. We obtain:

H(ε) =
17
10

2−2/3

(
1 +

10
17

1
ε

)
+O(ε). (14)

Fig. 1. Top: plot of the function H(ε) (Eq. (13), solid line),
together with the two firsts order of its expansion (Eq. (14),
dashed line). Both functions are hardly distinct. Bottom:
Percentage difference between H and its expansion. The agree-
ment is better than 4% in the relevant ε range (and always
better than 15% for all values of ε).

Checking the validity of this expansion in the range
0 ≤ ε ≤ 1 we find an agreement better than 4% (Fig. 1)
which is enough for our purpose (the error of the approx-
imation reaches a constant 15% level at large ε). Thus we
will neglect higher order corrections.

As a consequence, for the all range from groups to rich
clusters, one can write to a very good approximation:

K2 =
17
16

2−1/3K1

(
1 +

10
17

1
ε

)
. (15)

Note that this expression that fits so well the general adi-
abat expression is not really a surprise. Its physical signif-
icance is indeed straightforward. To show this, let us take
two limiting behaviour, namely in the cluster and in the
group mass range.

Since rich clusters of galaxies accrete mainly small
clumps and diffuse gas, the cold inflow or strong shock
limit is appropriate. Consequently it is usually argued that
the entropy of rich clusters is dominated by shock created
entropy. Indeed, for this approximation we have T2 � T1

and ε� 1, and so (from Eq. (15))

K2 '
5
8

2−1/3

ε
K1 . (16)

On the other hand, for groups of galaxies, the weak shock
or adiabatic infall approximation is more appropriate.
Indeed since the infall speed tends to be lower, and since
groups accrete preheated gas, the weak shock limit (whose
limit is the true adiabatic infall) is appropriate (CMT)1.
Indeed, taking the limit ε→ 1, Eq. (15) yields

K2 '
27
16

2−1/3K1 . (17)

1 Note that this hypothesis of adiabatic infall has been shown
to reproduce the LX−T relation in the group range by Balogh
et al. (1999).
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This means that the entropy content of groups is domi-
nated by the “adiabatically accreted” gas, hence the exis-
tence of a so-called entropy floor (the last expression ofK2

being independent of ε).
The analytic expression in Eq. (15) thus provides a

well physically motivated expression for the competition
between shocks and entropy floor that rules the adiabat
virial normalisation from groups to clusters.

2.3. Linking groups and clusters

2.3.1. Defining a general analytic K − T relation

We now want to make use of the previously derived ex-
pression (15) to predict a general relation for the K − T
relation for groups and clusters.

First, making use of Eqs. (8) and (15) we rewrite

K2 =
17
16

2−1/3K1

(
1 +

8
51
µmp v

2
1

k T1

)
. (18)

Second, we need to express the infall velocity v1 as a func-
tion of the mean temperature of the system. This is done
in Appendix A, where we show that using the virial the-
orem, the M − T relation, together with the assumption
of adiabatic cold inflow, we can write (φ1 being a charac-
teristic virial radius gravitational potential, T∗ a charac-
teristic temperature and η a dimensionless constant, see
Eqs. (B.5), (B.11) and (B.13)):

v2
1 = −2ηφ1

(
T

T∗

)
. (19)

Note that from now on we will assume notations of
Appendix A.

This leads naturally to:

K2(T ) =
17
10

2−2/3K1

[
1− 16

51
η
µmp φ1

k T1

(
T

T∗

)]
(20)

that we rewrite

K2(T ) = K0

[
1 +

(
T

T0

)]
, (21)

where we have defined2

K0 =
17
16

2−1/3K1 (22)

and

T0 = − 51
16 η

k T1

µmp φ1
T∗ . (23)

The scaling relation (21) is a key result of our paper. It
states how the entropy jumps due to the shock changes
with the mean temperature of the system. Written this
way, the last formula has two free parameters: a normal-
isation parameter K0 ' K1, i.e. the adiabat before the
shock, and the temperature T0 that marks the transition
from the adiabatic inflow to the strong shock regime.

2 Remark that 17/16×2−1/3 ' 0.843, so that K0 ' 0.843K1.

Deriving the value ofK1 requires a whole semi-analytic
scheme, which would require a model of the entropy evo-
lution of the intergalactic medium (hereafter IGM) as the
universe evolves (see e.g. Valageas & Silk 1999). This is
clearly beyond the scope of the present paper, and we
will thus constrain K1 by comparison with observations
(which only means that the normalisation of our model is
left free). However,K0 and T0 are not independent param-
eters and can be related by simple physical considerations
as will be shown in the next section.

Once this is done, the scaling relation (21) is left with
only one normalisation parameter K0.

2.3.2. Relating K0 and T0

First, to derive an explicit relation between K0 and T0,
we need to specify the value of both η and T1 in Eq. (23).
Using the results of Miniati et al. (2000) for the infall
velocity in hydrodynamic simulations (see Eq. (B.15) and
Appendix for notations), a value for η can be derived by
equating Eq. (B.15) and Eq. (19):

η = − v2
s0

2φ1

(
T∗
Ts

)
(24)

which, when introduced in Eq. (23), gives:

T0 =
51
8

k T1

µmp v2
s0

Ts , (25)

where Ts and vs0 are known (Appendix A).
The relation between K0 and T0 will appear when ex-

pliciting T1. Indeed we can write it as a function of the
pre-shock adiabat K1:

T1 = K1 n
2/3
1 . (26)

The overdensity that eventually collapses and reaches
a density ρ1 at rv has decoupled from the Hubble ex-
pansion at a turn-around redshift zta where its den-
sity was ρta and its radius was rta. Following Balogh
et al. (1999), we assume first that the IGM was preheated
(non-gravitationally) before zta and its adiabat raised to
the value K1. Second, we also assume that between rta
and the shock radius rv itself, the gas has an isentropic
behaviour. To fix the value of the overdensity (and thus
the density) δta = (ρta − ρ̄)/ρ̄ at the turn-around, we will
consider the simplest collapse model, i.e. the spherical col-
lapse model in a given cosmology.

By definition of the baryonic fraction fB and the over-
density δta we can write:

ρta = (1 + δta) ρc fB (27)

where ρc is the critical density. Inserting this last equation
in Eq. (25), one obtains:

T0 =
51
8
K1 ((1 + δta) ρc fB)2/3

(µmp)5/3
v2

s0

Ts , (28)

which relates K0 and T0 via Eq. (22).
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Consequently, to fix the numerical value of T0 we need
to specify a value of K1. We choose to assume the value
of the observed entropy floor visible in groups of galaxies.
A value of K1 = 120 keV cm2 is inferred from the data
(Lloyd-Davies et al. 2000, see the next section).

Then we assume a flat Ωm = 1 universe with
H0 = 50 km s−1 Mpc−1 and the baryonic fraction as
fixed by Big-Bang Nucleosynthesis standard, i.e. fB =
0.015h−2

100/Ωm (Olive et al. 2000). For a spherical collapse
model δta = 9π2/16. Note however that in the widely used
hierarchical structure formation paradigm, this monolithic
formation model is too simplistic. Indeed, since the ma-
jority of the infall of group of galaxies occurs through
filaments, an overdensity of δta ∼ 10 should be more
appropriate. Considering then the values of vs0 and Ts

specified in the Appendix, we find that T0 = 1.86 keV
for δta = 9π2/16 and T0 = 2.62 keV for δta = 10. This
is quite insensitive to the adopted cosmology, since for an
Ωm = 0.3 universe, one finds T0 = 1.71 keV and 2.33 keV
respectively. It is thus obvious that we can take for T0 an
intermediate value between these two extremes.

In the following, we will thus consider that T0 is fixed
at 2 keV, and that the only free parameter of the model
will be the normalisation factor K0. Moreover, choosing
a value of T0 between 1.5 and 2.5 keV does not alter the
quality of the fits we present in the next sections.

Looking at Eq. (21), T0 has a simple physical inter-
pretation: it is the system mean temperature where the
effect of an entropy floor begins to change the adiabat
jump during the virial shock. For systems with T < T0,
the pre-shock entropy is high enough to reduce the shock
and a quasi-adiabatic inflow takes places (but the shocks
are not completely suppressed, see Sect. 7.4). For T > T0,
the shock adiabat jump brings the post-shock adiabat to
values much higher that the entropy floor, the latter hav-
ing less and less incidence as T increases. Thus we find
that this transition occurs around 2 keV.

2.3.3. Comparing with observations

X-ray observations of groups and clusters of galaxies have
brought a great amount of information on the gas equi-
librium in these systems. Unfortunately, due mostly to
the high background of the instruments and the gas den-
sity decline with radius, there are not yet entropy obser-
vations available up to the virial radius, that would al-
low to test directly our model (and more generally the
scheme invented by CMT). The new generation of satel-
lites (Chandra and XMM-Newton) is expected to bring
new observations near the virial radius, allowing to test
different formation scenarios of clusters and groups (see
e.g., Tozzi et al. 2000).

Nevertheless, some data on the central adiabat value
of the gas in groups and clusters are available. Ponman
et al. (1999) were the first to show that groups have
a central adiabat higher than the one they would
have if it had been imposed by shocks only. Recently,

Fig. 2. Post-shock adiabat K2 as a function of the mean tem-
perature of the system. The solid line is obtained with Eq. (21),
with K1 = 120 keV cm2 (i.e., K0 = 102 keV cm2). Note that
only the normalisation is a free parameter, as the reference tem-
perature T0 = 2 keV is obtained from the value of K1. The
dashed line is a K ∝ T fit to the systems above 4 keV found by
Helsdon & Ponman (2000). The similarity of the shock model
adiabat normalisation (computed at the virial radius) with the
data taken at the center (R = 0.1 rv) allows us to postulate
an approximate self-similarity in the specific entropy profile in
the Sect. 3.

Lloyd-Davies et al. (2000) have refined these observations,
taking into account the temperature gradients, while in-
creasing the statistics. This is the so-called observed “en-
tropy floor”. While cool systems have a constant central
adiabat, hotter clusters follow naturally the results of nu-
merical simulations without a preheating phase (which
predict that K ∝ T ). Note that our model predicts exactly
the same behaviour, exhibited in the post-shock adiabat
analytic expression of Eq. (21). However, we compute the
adiabat near the virial radius, while the data come from
the central parts of the systems. Nevertheless, observa-
tions and theory can be compared if we assume that the
adiabat difference between two different temperature sys-
tems is conserved when going from the virial radius to the
central part. This implies that the physical mechanism re-
sponsible for the post-shock adiabat value (competition
between shocks and an entropy floor) is the same as the
one responsible for the central adiabat value. This is in-
deed a reasonable assumption, since 3D hydrodynamical
simulations of the formation of clusters show that, after
the last major merger, a quasi-spherical shock forms and
expands, that leaves behind an increasing adiabat pro-
file (see e.g., Evrard 1990; Frenk et al. 1999). The same
physics is thus at work in the center and in the outer parts
of clusters, allowing the physical description of the two re-
gions to coincide. Indeed, the only difference between these
two regions is that the universe will have evolved when the
shock reaches the present-day virial radius, as compared to
the time when the central entropy is set. We thus don’t ex-
pect the observational value ofK1 (found by normalisation
to the observations) to be representative of the present
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adiabat of the universe, but it should instead be repre-
sentative of the IGM at the time when the smaller mass
systems formed. If virial radius observations of the adia-
bat were available for the same systems, we expect then
that the same analytic expression as in Eq. (21) would be
a good description of the data, with a different value of
K1, representative of the present-day adiabat of the IGM.

Figure 2 shows the comparison of Eq. (21) with data
from Lloyd-Davies et al. (2000). Only the normalisation
was fitted here, with a value of K1 = 120 keV cm2 (giving
K0 = 102 keV cm2), while we have taken T0 = 2 keV,
derived with the same value of K1 in the last section.
Replacing Eq. (28) in Eq. (21) instead, and fitting for K1

gives an undistinguishible analytic curve. The dashed line
is the result of a K ∝ T fit to the systems above 4 keV
found by Helsdon & Ponman (2000). This temperature
dependence of the adiabat is taken from numerical simu-
lations (see Ponman et al. 1999). The dot-dashed line is a
constant gas entropy fitted to the four lowest temperature
systems by Lloyd-Davies et al. (2000) and has a value of
139 keV cm2. The agreement between the analytic formula
and the data is remarkable. Indeed, using the fitted value
of K1, the computed T0 value agrees very well with the
temperature of the intersection between these two limit-
ing behaviours (see last section). This shows that Eq. (21)
is not a mere analytic formula (which could have been in-
ferred from the observations), but succeeds in capturing
both ingredients which fix the central entropy value: the
entropy floor (dot-dashed line in the groups mass range)
and the shocks (dashed line, in the cluster mass range).

By adjusting the normalisation of our analytic model
using the data we derive a value for K1. Then making use
of this relation we get directly for any system at a given
temperature T (either a group or a cluster) the normali-
sation of the adiabat profile. It is now important to check
whether we are able to use this relation to derive realistic
LX − T and y − T relations for both groups and clusters.

3. From the adiabat to the LXT relation

The total X-ray luminosity of a local cluster (group) of
galaxies is expressed as:

LX =
∫

V

n2
eΛe(∆E, Te) dV, (29)

where ne is the electronic density and the integration
is carried out over the whole volume V of the system.
Λe(∆E, Te) denotes the local X-ray emissivity of the clus-
ter gas within a given energy band ∆E. For example, in
the case of pure thermal Brehmsstrahlung emission ob-
served with contemporary wide-band satellite, one has
Λe ∝ T 1/2

e .

3.1. An analytic prediction for the LX−T relation

We can now express Eq. (29) as a function of K and thus
link the X-ray luminosity with the temperature and the
adiabat:

LX =
∫

V

T 3

K3
Λe(∆E, T ) dV. (30)

Since we assume the cluster to be isothermal and since
in general the emissivity can be written as a power-law
function of the temperature with index α, one has:

LX

T 3+α
= Λ0

∫
V

dV
K3

, (31)

Λ0 being the normalisation of the emissivity.
Equation (31) gives us a direct link between LX, T

andK. Were the expression ofK as a function of T known,
it would enable us to predict the shape of the LX−T rela-
tion. However, the result of the previous section (21) gives
us the change in the adiabat normalisation as a function
of temperature, but since the integral in Eq. (31) is com-
puted over all the system volume, in principle we need the
adiabat profile to compute it. However, if we make the fur-
ther assumption that the adiabat profiles are self-similar
in temperature, i.e. the temperature enters the analytic
expression of K(r) by its normalisation only, then we can
derive an expected LX − T relation. This assumption is
justified by the fact that our theoretical expression for
the adiabat normalisation (Eq. (21)), which is computed
at the virial radius, provides a very good fit to the cen-
tral entropy data in groups and clusters. This simple fact
ensures that the difference in normalisation between two
clusters of different temperature (which is due to shocks
and preheating) is leaved approximately unchanged from
the virial radius to the center. This important side aspect
of our work will be discussed in Sect. 7. We thus write:

K(r, T2) = K2(T2) f(r), (32)

where K2(T2) is given by Eq. (21) and f(r) is a func-
tion of the radius, that is independent of the mean system
temperature. We have thus:

LX

T 3+α
= Λ0K2(T )−3

∫
V

dV
f3(r)

· (33)

Even if f does not depend on T , the integral on the right-
hand side of the last equation depends on the total volume
of the cluster, and thus on its virial radius, which depends
also on the mean temperature. Let us assume that the
cluster is spherically symmetric (which is reasonable if the
system has sufficient time to relax). We can then write:∫
V

dV
f3(r)

= 4π
∫ rv

0

r2f−3(r)dr (34)

= 4πr3
v

∫ 1

0

x2f−3(x)dx (35)

≡ 4πr3
v QX (36)

where we set x = r/rv and define the shape factor QX.
Using then the rv −M and M − T relation of Eq. (B.10)
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Fig. 3. LX − T relation versus observations from Helsdon &
Ponman (2000) for groups (triangles) and Markevitch (1998)
and Arnaud & Evrard (1999) for clusters (respectively dia-
monds and squares). The solid line is the analytic formula in
Eq. (37). T0 was fixed at the value computed in Sect. 2.3.2 i.e.,
T0 = 2 keV, and QX = 0.115, as computed in Appendix C.

and (B.11) before using our K−T relation (21), we obtain
when replacing in Eq. (33):

LX = L0 T
9/2+α

[
1 +

(
T

T0

)]−3

(37)

where the normalisation L0 is given by:

L0 = Λ0

(
3M∗

∆ ρ0
c T

3/2
∗

)
K−3

0 QX. (38)

Let us first comment on the shape of the LX−T relation.
While for the group range, where α = 0 and T � T0, we
have:

LX ∝ T 9/2 ∝ T 4.5, (39)

for very hot clusters (for which T � T0 and α = 1/2), we
recover the so-called self-similar behaviour:

LX ∝ T 9/2+1/2−3 ∝ T 2. (40)

The 10 keV cluster range will be intermediate between
these two behaviours. We now turn to a comparison with
observations.

3.2. Comparing with LX−T observations

The normalisation of the local LX− T relation (Eq. (38))
depends on the value of the IGM adiabatK0 and the shape
factor QX. The former has been obtained in Sect. 2.3.3
(K0 = 102 keV cm2) by comparing our analytic for-
mula for the adiabat jump to observations. The latter is
more difficult to obtain since it will depend on the ex-
act adiabat profile of clusters and groups. We show in
Appendix C that we can compute a value for QX by con-
sidering a reasonable model for the adiabat profile, relying
on isothermality and a β–model for the gas density profile

(Cavaliere & Fusco-Femiano 1976). The computed value
is QX = 0.115.

To validate this relation, we plot in Fig. 3 the LX − T
relation of Eq. (37) together with data taken for groups
(from Helsdon & Ponman 2000) and clusters of galaxies
(Markevitch 1998; Arnaud & Evrard 1999). The quality of
the fit is obviously excellent. Note that we adopt for T0 the
value computed in Sect. 2.3.2 and used QX = 0.115. There
is thus no free parameter in the solid curve computation,
since K0 has been already fixed.

Note that the hotter groups seem to be overluminous
when compared to the cluster data as well as to the ana-
lytic relation. There are indeed several uncertainties con-
cerning these systems, both observational and theoreti-
cal. Groups are much less luminous than clusters, which
has some important consequences: first, the radius of de-
tection (in units of the virial radius) is small and varies
among groups: this effect is very hard to correct since the
value of the asymptotic slope of the surface brightness (β
in a β-model) is very uncertain. Second, it is very dif-
ficult to separate the intra-group medium emission from
the galactic emission, which can lead to an important mis-
estimation of the total flux (see in particular the discus-
sion on HCG 16 by Dos Santos & Mamon 1999). Third,
the central cooling-flows were cut (Markevitch 1998) or
the sample was chosen explicitly to contain only clus-
ters with known weak cooling-flows (Arnaud & Evrard
1999). On the contrary, the groups luminosity in Helsdon
& Ponman (2000) are not cooling-flow corrected, since it
is very delicate to separate the cooling-flow from the ICM
emission with ROSAT’s PSPC resolution. This could also
explain that the hotter groups (which are expected to have
the greatest fraction of their luminosity coming from their
cooling-flow because of their higher central density) show
the greatest departure. Our model does not take into ac-
count a possible cooling-flow component, which explains
that it fits very well the cluster data, while lying near the
lower envelope of the hotter groups. It fits nevertheless
very well the lower temperature groups3. As usually done,
we thus assume that the discrepancies affecting the high
temperature groups is mainly due to observational uncer-
tainties and does not compromise our overall simplified
picture.

Both the cluster slope and the group steeper slope
come out naturally of our relation. This agreement is re-
markable and is the first to our knowledge based on an
analytic discussion to encompass both groups and clusters.

This good agreements is a strong sign in favor of the
consistency of our approach. It is thus natural to try to
apply an analogous method to the correlation between
the mass of gas and the mean temperature, as well as to
the SZ effect, and compare cluster observations with our
analytic predictions. Unfortunately, gas mass observations
are sparse and heterogeneous for groups, while no SZ ef-
fect in a group has yet been observed. We can nevertheless

3 For more discussion on this point, see Brighenti & Mathews
(2001), Sect. 2.1.
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make predictions for the MICM − T and y − T relation in
this range, which could be validated by undoubtly forth-
coming SZ measurements.

4. From the adiabat to the ICM gas mass and gas
fraction

4.1. Predicting the MICM−T relation and comparing
to observations

Another tight correlation found in reducing ICM data of
clusters is the link between the ICM mass and the mean
temperature. For a perfectly self-similar model, one ex-
pects theoretically MICM ∝ T 3/2. In fact, several groups
have reported recently a steepening of this relation, which
could be due to entropy injection. Vikhlinin et al. (1999)
have studied the outer regions of a ROSAT sample of clus-
ters, and found that the above correlation could be written
MICM ∝ T 1.71±0.13, steeper but nevertheless close to the
self-similar value. On the other hand, Mohr et al. (1999)
have fitted double β-models to another large sample of
clusters and found that MICM ∝ T 1.98±0.18, much steeper
than the self-similar model. It is not clear if this discrep-
ancy (at only 1 σ level) is real and if so, what are the
reasons behind it.

It is easy to compute this correlation in our framework
and worth comparing our predictions with observations.
The ICM mass of gas can be written (assuming spherical
symmetry):

MICM = 4 π
∫ rv

0

r2 ρgas(r) dr, (41)

where ρgas(r) = µmp n(r) is the mass density of plasma.
Rescaling with the virial radius and replacing the gas num-
ber density by a combination of temperature and adiabat,
one finds:

MICM = M0
ICM T 3

[
1 +

T

T0

]−3/2

(42)

with

M0
ICM = µmp

(
3M∗

∆ ρ0
c T

3/2
∗

)
K
−3/2
0 QM, (43)

where we defined naturally:

QM =
∫ 1

0

x2 dx
f3/2

· (44)

The value of this shape factor, which determines the over-
all normalisation, is also evaluated in Appendix C. The
predicted value using Eq. (44) is QM = 0.1915, while
the best-fit normalisation is ∼40% lower. We argue in
Appendix C that the observed surface brightness in most
of the clusters does not reach r500 (the virial radius) and
thus needs an risky extrapolation of the data. Moreover,
the observational derivation of r∆ is also dependent on
several assumptions (in particular on the assumption of a
given mass profile) and it is possible that the gas masses

Fig. 4. MICM − T correlation. The data are from Mohr
et al. (1999). The dashed line is the best-fit linear correlation
MICM ∝ T 1.98 found by these authors, while the solid line is
the predicted correlation (Eq. (42)) using the computed value
QM = 0.1136 (see Appendix C). The curvature of our predic-
tion is clearly visible when compared to the best-fit power-law.

were in fact computed at ∆ 6= 500. Indeed, lowering the
the upper boundary of the integral in Eq. (44) to 0.8
(i.e., assuming r500 is underestimated by only 20%) gives
QM = 0.1136, which is in perfect agreement with the data.
We use this value in Fig. 4 and in the following section.

The slope of the correlation also steepens from very
hot clusters (MICM ∝ T 3/2, analogous to the self-similar
correlation) to groups (MICM ∝ T 3). The temperature
range probed by Mohr et al. (1999) is intermediate be-
tween these two behaviours.

Figure 4 shows the data from Mohr et al. (1999), as
well as their best-fit linear correlation MICM ∝ T 1.98

(dashed line). The solid line is our predicted relation us-
ing the computed value QM = 0.1136. The predicted slope
matches perfectly the data. The steepening of the relation
compared to the self-similar one is thus, in our particu-
lar model, simply a consequence of the differential shock
strength and the entropy floor.

4.2. Comparing the subsequent fgas−T relation
with observations

The gas fraction is very important in that it is supposed
to give a direct lower limit on the universe baryon frac-
tion, if clusters are a fair sample of the universe (White
et al. 1993). Such measurements have proven to be tight
constraints to the total mass density of the universe.

Using Eq. (42) and the observed M − T relation of
Eq. (B.11), i.e. the observed scaling between total mass
and temperature, it is straightforward to compute the gas
fraction variation with temperature:

fgas = f0
gas T

3/2

[
1 +

T

T0

]−3/2

. (45)
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Fig. 5. fgas−T relation. Data are taken from Mohr et al. (1999)
as well as the shaded area which corresponds to the domain
of validity of their fitted power law, ±1σ. The solid line corre-
sponds to our prediction. Both the trend and the normalisation
are in good agreements.

with

f0
gas = µmp

(
3

∆ ρ0
c

)
K
−3/2
0 QM . (46)

The value of QM is the same as in the last section (QM =
0.1136) and no renormalisation is performed.

Equation (45) is shown in Fig. 5, together with ob-
servations. The data points are from Mohr et al. (1999).
These data were fitted by the authors with a power-law,
namely fgas = (0.207 ± 0.011)(T/6 keV)0.34±0.22. The
shaded area, limited in abscissa by the minimum and max-
imum temperature of the sample, represents the area cov-
ered by similar power-laws increased and decreased by 1σ
(both in normalisation and in slope). It is obvious that
the data are dispersed, but the trend found by Mohr et al.
(1999) is very well recovered by Eq. (45), as well as the
normalisation.

Looking at Eq. (45), one sees that for T0 � T , i.e. for
rich clusters, the gas fraction becomes independent of the
temperature. This regime is only reached asymptotically
in the figure. On the other end the slope steepens from
clusters to groups, since we have:

fgas ∝ f0
gas T

3/2
0 = constant for rich clusters,

∝ M for groups, (47)

where M is the total mass of the group. It is interesting
to note that the fact that the gas fraction is proportional
to the total mass in the groups regime was first claimed
by Balogh et al. (1999). We thus recover analytically the
adiabatic behaviour modeled by these authors. However,
their model breaks down at high temperature, when the
shocks become important, while ours runs smoothly from
an adiabatic infall to a shock-dominated regime.

5. From the adiabat to the SZ temperature
decrement

The observations against which our model was validated
above were only in the X-ray wavelengths. We are now
turning to the radio and sub-millimeter bandwidth, which
also probes the hot gas in clusters (via the Sunyaev-
Zeldovich effect) and offers independent observations, with
different possible systematics and errors. This allows us to
independently validate the model and make some predic-
tions about the group behaviour in this band.

Inverse-Compton scattering of incoming CMB photons
on ICM thermal electrons cause a well observed change
in the spectral dependence of the CMB (Rephaeli 1995;
Birkinshaw 1999). The amplitude of the CMB tempera-
ture brightness variation can be written:

∆T
TCMB

= h(x)
∫ (

kT

mec2

)
neσTdl ≡ h(x) y, (48)

where h(x) is the frequency dependence (with x =
hν/kTCMB), which simplifies to h(x) = −2 at the
Rayleigh-Jeans part of the spectrum, y being called the
comptonization parameter. The integral in the right-hand
side of Eq. (48) can be expressed as a function of K, as
for the X-ray luminosity:

∆T
TCMB

= h(x) y (49)

= h(x)
kσT
mec2

∫
neTdl (50)

= h(x)
σT
mec2

∫
(kT )5/2

K3/2
dl. (51)

5.1. An analytic prediction for the y − T relation

For current SZ experiments resolution (especially interfer-
ometric ones), the beam smearing is still a critical issue
as long as we want to determine a central value. Most
authors use X-ray determined temperature as well as the
X-ray surface brightness to correct for the beam and to
obtain the central value of the SZ effect y(0). This might
be a source of uncertainty but we will nevertheless express
this quantity in our physical framework, and compare it
to observations.

The beam-corrected quantity can be obtained in the
following way: going back to Eq. (51) we write (assuming
spherical symmetry)

y0 ≡ y(0)

=
σT
mec2

∫
T 5/2

K3/2(T )
dl (52)

=
σT
mec2

T 5/2

K
3/2
2 (T )

∫ ∞
R

rdr√
r2 −R2f3/2(r)

=
σT
mec2

T 5/2

K
3/2
2 (T )

Rv

∫ ∞
0

dx
f3/2(x)

· (53)
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Fig. 6. Central SZ decrement – X-ray temperature relation.
The data points are taken from Zhang & Wu (2000). The solid
line is the predicted y0 using QSZ = 1.835 . The dot-dashed line
corresponds to the renormalised correlation fitted by Cooray
(1999). The predicted normalisation was computed using K0 =
102 keVcm2 and T0 = 2 keV, i.e., it is not free once K0 has
been fitted to the observations (Sect. 2.3.3).

Using Eqs. (21), (B.10) and (B.11) we have thus:

y0 = y0 T
3

[
1 +

(
T

T0

)]−3/2

(54)

with

y0 =
σT
mec2

[
3M∗

4 π∆ ρ0
c T

3/2
∗

]1/3

K
−3/2
0 QSZ, (55)

where we have defined:

QSZ =
∫ ∞

0

dx

f3/2(x)
· (56)

The value of QSZ is computed in Appendix C.
Finally, let us make a comment about the shape of the

y − T relation. For T � T0, we get:

y0 ∝ T 3−3/2 ∝ T 3/2, (57)

while for T � T0:

y0 ∝ T 3. (58)

Thus, as a matter of fact we expect a steepening of the
y − T relation when going from clusters to groups.

5.2. Comparing with y – T observations

Taking observational data from Zhang & Wu (2000) (dia-
monds), we can compare our predicted relation of Eq. (54)
to observed correlations.

In Fig. 6 we plot data and their associated error bars,
our prediction for QSZ = 1.835 (solid line, computed in
Appendix C) and the best fit of (Cooray 1999 dot-dashed

line)4. The fact that only rich cluster data are yet avail-
able (which limits the leverage on the slope) and the large
dispersion on the observed y−T correlation translates into
a large uncertainty on the best-fit slope: 2.35± 0.85.

Our prediction for the beam-corrected value is steeper
than the Cooray’s best-fit relation but still consistent with
it at the 1σ level. It seems to be in better agreement
with Zhang’s data set, which extends to slightly higher
and lower temperatures than Cooray’s. Note that we will
further show that Eq. (54) is also in very good agreement
with semi-analytic models for both groups and clusters.

The overall agreement with both data sets is less im-
pressive than for the previously derived LX − T rela-
tion, but is still very reasonable, given the observational
dispersion.

Since X-ray and SZ observations are completely inde-
pendent, the agreement between our analytic model with
the latter is another independent confirmation of its va-
lidity. A robust confirmation would come from SZ ob-
servations of groups of galaxies (unfortunately not yet
feasible) and from the change in the correlation slopes.
Nevertheless, we can compare our simple model to more
elaborate semi-analytic models and their predictions.

Menci & Cavaliere (2001) have presented semi-analytic
predictions for the observed SZ effect in groups and clus-
ters. Their semi-analytic model takes into account the pre-
heating due to star formation, in order to bend the LX−T
relation in the groups mass range. Our predictions for the
y(0)−T relation (namely Eq. (57) for clusters and (58) for
groups) are in complete accord with their preheated mod-
els. They found a self-similar relation for high mass sys-
tems (y ∝ T 3/2) which is exactly our prediction. The slope
in the groups mass range depends on the feedback model
they chose, but our prediction (y(0) ∝ T 3) is also similar
to their computed moderate feedback model (which looks
to be a better choice, since their strong feedback model is
likely to give only an upper limit on the feedback effect).
We are thus able to reproduce their Figs. 3 and 4 with our
simple analytic model. Even if this is not a confirmation
of the model (since we use an analytic version of their
model of shocks and our hypotheses on the preheating
are very similar), we find it extremely satisfying to repro-
duce analytically, and in a physically straightforward and
motivated way, the results of a more complicated and non-
analytic model. This gives us more confidence in the fact,
that we have captured in this simple physical scheme the
essential ingredients of the clusters and groups formation.

6. Linking SZ and X-ray measurements

To link SZ and X-ray measurements, it is natural to de-
termine a correlation between y and LX. It is expected
to be much tighter than the y − T relation (see Cooray
1999), but is more intricate to obtain analytically. In
this section, we will give two analytic expressions for this

4 Note that in Cooray (1999)’s paper, the quoted normalisa-
tion of the best-fit y − T relation is wrong by a factor of 10.
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Fig. 7. Central SZ decrement – X-ray luminosity relation. The
solid line represents the analytic predicted correlation, using
the predicted values of QSZ and QX found in Appendix C. The
dashed line corresponds to Cooray (1999)’s best-fit correlation.
The data are taken from Zhang & Wu (2000).

correlation in the rich clusters’s and in the groups’ range
mass respectively.

Indeed using Eqs. (54) and (37), we can write:

LX

y2
0

=
L0

X

y0

Tα−3/2. (59)

To proceed further we need now to “invert” Eq. (54) but
this can not be easily done without a new hypothesis.
Since the SZ observations span only the range of clusters
yet, as long as we want to compare to observations it is
satisfying to assume that T � T0. We can then write:

T = T
−3/2
0

(
y0

y0

)2/3

, (60)

and inserting this in Eq. (59) gives:

LX = L0
X T

3/2
0

(
y0

y0

)1+ 2
3α

(61)

= L0
X T

3/2
0

(
y0

y0

)4/3

with α = 1/2. (62)

The observed correlation between y and LX, together with
the analytic prediction (Eq. (62), solid line) is shown in
Fig. 7. The data are taken from Zhang & Wu (2000)
and the dashed line is the best-fit relation found by
Cooray (1999). The normalisation has been computed us-
ing K0 = 102 keV cm2, T0 = 2 keV, QX = 0.115 and
QSZ = 1.835. The agreement is very good, even if it must
be recalled that the shown correlation has been computed
for the case T � T0. Thus the real correlation will be
slightly steeper (thus more in agreement with Cooray’s
correlation), but by a very small amount, well within the
observational dispersion.

Finally, one can compute this correlation in the groups
mass range (T � T0), yielding a steeper correlation:

LX = L0
X

(
y0

y0

)3/2

with α = 0. (63)

7. Discussion

We have shown that a simple modeling of the main pro-
cess in charge of the formation of clusters (namely the
shocks which thermalise the gas inside the virial radius)
allows us to derive a general K − T relation that repro-
duces very well the observed one. Moreover, we were able
to deduce most of the observed scaling laws with the ade-
quate normalisation, encompassing both groups and clus-
ters. Thus, the physical meaning of e.g. the LX − T and
y−T relations, and in particular of the break in their self-
similarity when going from clusters to groups (only evi-
denced in X-rays for the moment) can be understood as a
relic of the formation process of these systems: a compe-
tition between an entropy floor prior to the shock and the
shock process itself. This suggests naturally that entropy
constitutes the best “observable” in clusters, as already
emphasized by the modified spherical model of Tozzi &
Norman (2001). What we add here is that we show that
entropy (in fact, the adiabat) is also suitable to seek ana-
lytic expressions for the different correlations found obser-
vationally in groups and clusters. Reversing this argument,
these scaling laws should be an appropriate probe of the
entropy content of clusters.

7.1. The LX−T relation as a probe of entropy content

While the entropy spatial variations of the baryonic gas in
clusters is a valuable piece of information on their present
thermodynamic state (in particular for merging clusters,
see e.g., Markevitch et al. 1999), the total entropy con-
tent K (hereafter TEC), defined as

K =
∫

V

K(r) dV (64)

is related to the integrated thermodynamic history of
the formation of these systems. Therefore, any non-
gravitational entropy injection at some point in this his-
tory will enhance the entropy content over the shock-
generated one, while the cooling should decrease it in the
central parts.

The analytic model we have presented in the last sec-
tions allows us to shed some light in the TEC and its link
to the LX−T relation. On the one hand, given our assump-
tion of isothermality, Eq. (31) indicates that LX/T

3+α

is related to the TEC in a given system. On the other
hand, the self-similar models of cluster formation (Kaiser
1986) predict that LX ∝ T 2, which gives directly (using
α = 1/2):

LX

T 7/2
∝ T−3/2. (65)

Any departure from this last relation witnesses entropy in-
jection or loss. Consequently, at a given temperature, the
gap between the curve representing Eq. (65) and the locus
of observed groups and clusters will give a indirect mea-
sure of entropy gain at a given mass (if the central cooling
parts are adequately excised). Unlike the observations of
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the “entropy floor”, which were obtained at a single scaled
radius near the center (Ponman et al. 1999; Lloyd-Davies
et al. 2000) and so are representative of a particular point
in the entropic history (i.e., at a time near the last major
merger), this measure includes most of the volume of the
systems and thus most of its past thermodynamic history.
However, this does not directly measure K, but the inte-
gral of a power-law of the TEC. We will first show that
in a semi-analytic scheme (with less assumptions than the
present analytic model as well as with a realistic entropy
evolution of the intergalactic medium) the interpretation
of the LX − T relation is still valid and then discuss how
X-ray and SZ observations can constraint the TEC.

7.2. Relaxing some hypotheses

Assuming local thermodynamic equilibrium, isothermal-
ity, and the self-similarity of the adiabat profile, we illus-
trated how the observed LX−T relation is a probe of the
TEC. Whereas the LTE is quite robust (and actually very
difficult in practice to alleviate), neither the isothermality
nor the self-similarity are fully exact from both an ob-
servational and a theoretical point of view. In particular,
this last assumption is a very strong one and will be dis-
cussed in depth in Sect. 7.3. It is thus worth relaxing these
hypotheses and testing the validity of our work by consid-
ering how well the quantity

∫
V K−3dV probes LX/T

7/2,
i.e. testing Eq. (31) when we consider a full non-isothermal
and non-self-similar profile.

To this purpose, we will use a semi-analytic model
(hereafter SAM) developed independently by one of us
(Dos Santos 2001, in preparation). This particular model
uses the conduction-structured temperature profile (which
was shown by Dos Santos (2001) to describe very well the
temperature and surface brightness profile of clusters of
galaxies), together with an NFW profile for the dark mat-
ter density profile. A shock model at the virial radius,
together with entropic constraints at the center allow to
predict the temperature profile without the hypothesis of
isothermality or the unphysical polytropic link between
temperature and density. The evolution of the central en-
tropy is governed by the entropy evolution of the IGM
in the universe obtained from the model of Valageas &
Silk (1999) in two different cases: in the first one, the re-
heating is provided by SN explosions only, while in the
second one, AGN and quasar activity provide the entropy
injection. Both cases were validated against a number of
observations, including the LX − T relation, the change
in surface brightness profiles from clusters to groups, the
baryon fraction in these systems and the entropy floor.

Figure 8 shows the comparison between observations
and the SAM. The solid (SN case) and dashed lines (QSO
case) show the quantity

∫
V
K−3dV computed directly us-

ing the model. Since the specific entropy is known up to
an additive constant, both lines were normalised to match
the high temperature clusters. The dot-dashed line shows
the self-similar prediction for LX/T

7/2 (Eq. (65)), also

Fig. 8. Lx/T
7/2 (observational points) compared to the direct

computation of
∫

V
K−3(r) dV in the SAM. The data are the

same as in the Fig. 3. The solid (respectively dashed) line is
the result of the SAM in the case of SN (respectively QSO)
reheating. The dot-dashed line is the self-similar prediction
(LX/T

7/2 ∝ T−3/2). Thus, relaxing the assumptions of isother-
mality and self-similarity of our analytic model does not change
the interpretation of LX/T

7/2 as a probe of
∫

V
K−3(r) dV .

This explains that our simple model is able to recover the slope
and the normalisation of the LX − T relation.

renormalised to match rich clusters. The preheated models
high temperature slopes match naturally the self-similar
prediction. They also match very well the cluster data
and their trend in temperature. It is in particular remark-
able that the three clusters with the smallest temperatures
(T ∼ 2 keV) depart notably from the self-similar predic-
tion, and lie exactly on top of the semi-analytic prediction.
The lower envelope of groups is well followed by the SAM,
while some points are over this prediction. We think that,
as in Sect. 3.2, this is due partly to the fact that the cen-
tral cooling regions of groups were not removed, unlike the
clusters, and partly to an intrinsic scatter.

The figure shows why our simple model works well in
recovering slope and normalisation of the LX−T relation
(and of the other relations we studied): the equality (31) is
also verified in a more general semi-analytic model where
the adiabat profile is fully known and the ICM is not
isothermal. At a given temperature, the difference in loca-
tion between observations and the self-similar curve will
give a measure of the non-gravitational entropy injection
in systems with this mean temperature. This measure does
not depend at all on hydrostatic equilibrium or spherical
symmetry. Nor does it require either that the preheating
was external. In fact, Eq. (33) is completely independent
of any modeling of the entropy injection. It only requires
isothermality and local thermodynamic equilibrium on the
scales probed by the observations. It thus can be used as a
powerful, model-independent, constraint on all the inter-
nal or external preheating models, as well as on differential
galaxy formation efficiency between groups and clusters
(Bryan 2000). Unfortunately, the TEC is not measured
directly, but the integral of the right-hand side of Eq. (31)
will obviously decrease as the entropy injection amount is
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increased. Thus, if the adiabat profile is known in a given
model, it will be easy to relate this integral to the TEC,
even if a certain amount of degeneracy will obviously be
present (this measure being integrated in space and time,
different entropy injection histories can lead to the same
final amount of entropy at z = 0).

In fact, this constraint will be more or less the same
as the constraint given by the LX − T relation (already
used to constrain the models), even if the interpretation
in terms of entropy is physically more satisfying. However,
the same remarks can be made with the surface inte-
grated SZ decrement. Indeed, the SZ y-Compton param-
eter integrated over the whole surface of a cluster can be
written:
y

T 5/2
=

σT
me c2

∫
V

dV
K3/2(r)

, (66)

which shows that the quantity y/T 5/2 is also a probe of
the entropy content, but with a different power of the adi-
abat profile inside the integral. Thus, once SZ observations
for groups are available, even non-resolved, the combina-
tion of X-rays and SZ at a given temperature will be a
powerful constraint on cluster formation and preheating
models. Note that the relation MICM − T gives an analo-
gous relation as Eq. (66), and can thus be used now as an
entropy probe.

7.3. The adiabat profiles and the self-similarity

To derive the analytic scaling relations presented in
this paper, we have used a strong assumption: the self-
similarity of rescaled adiabat profiles (see Eq. (32)) i.e.,
the fact that the temperature enters only the normali-
sation of the adiabat profile. The validity of this assump-
tion is questionable, both on observational and theoretical
grounds.

Ponman et al. (1999) show that density profiles are
shallower in groups than in clusters (even if this result
is still uncertain, see Roussel et al. 2000, for an alter-
native view), while preheating models predict naturally
that entropy gradients in lower temperature systems are
smaller than in clusters (due to adiabatic infall during
their lifetime, see Balogh et al. 1999; Tozzi & Norman
2001). However, these models predict also large tempera-
ture gradients in groups which are not observed (Tozzi &
Norman 2001). Moreover, using 1D hydrodynamic models
with internal or external preheating, Brighenti & Mathews
(2001) obtain linearly rising entropy profiles in groups
(outside an isentropic core for external preheating mod-
els) as well as in clusters. They thus produce naturally
self-similar adiabat profiles in groups and clusters. The
reasons for such discrepancies are unclear, but are cer-
tainly linked with widely differing simulation methods.
Note however that Knight & Ponman (1997), using sim-
ilar 1D hydrodynamic simulations, have found shallower
slopes in groups compared to clusters, without taking into
account any preheating (whose effect is expected to widen
the slope difference).

Fig. 9. Upper panel: average scaled adiabat profiles for sys-
tems grouped by mean temperature (solid: 6–14 keV; dashed:
3.7–6 keV; dot-dashed: 1.3–3.7 keV; dotted: 0.5–1.3 keV). Each
individual profile was obtained from the best-fit gas and den-
sity profiles given by Lloyd-Davies et al. (2000) and scaled by
[1 + T/T0] /(1 + z)2. No trend is found with the temperature
and all the profiles are approximately self-similar. The vertical
dashed line shows the mean cooling-flow radius. Bottom panel:
scaled central entropy value as a function of the mean tempera-
ture of each system. Again, no excess in groups is found, which
validates our assumption of self-similar adiabat profiles (at
least in the core) and our approach. The dashed line shows the
entropy floor value inferred from the data (K0 = 102 keV cm2,
corresponding to K1 = 120 keV cm2).

Spatially-resolved spectroscopic observations of groups
and clusters provide directly adiabat profiles in groups
and clusters and can then help to settle this debate.
Unfortunately, the low surface-brightness of groups allows
this type of study only to small radii5. Indeed, Lloyd-
Davies et al. (2000) obtained the adiabat profile for 12 sys-
tems with T < 4 keV up to r = 0.25 × rv. Even if this
maximum extent radius is small, the study of the adi-
abat profiles behaviour with temperature inside it is still
worthwhile, since the X-ray luminosity comes mainly from

5 Note that this situation will be much improved with
groups observations with XMM-Newton, due to its enhanced
sensitivity.
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this central part of the cluster (due to the n2 scaling of
LX). These authors have rescaled their observed entropy
profiles by a factor T−1(1 + z)2, removing the effect of
system mass and of the evolution of the mean density of
the universe. They found that the scaled adiabat profiles
normalisations do not coincide, the less massive systems
having higher scaled entropy profiles (see their Fig. 4), al-
though the profiles themselves are similar. However, this
particular scaling does not take into account the physi-
cal processes that change the adiabat normalisation with
mass. What we have shown in this paper is that the adia-
bat profiles of groups and clusters should be rescaled (i.e.,
divided) by the quantity:[
1 +

T

T0

]
(1 + z)−2, (67)

where the (1 + z)−1 factor comes from the redshift de-
pendence of the central density (proportional to the mean
density of the universe i.e., ∝ (1 + z)3).

Using the best-fit β−model for the gas density and the
best-fit linear ramp for the temperature profile, we repro-
duced their adiabat profiles, and rescaled them individ-
ually by the quantity in Eq. (67). Then we grouped the
systems by temperature and computed the mean scaled
profile, as in Lloyd-Davies et al. (2000). The scaled pro-
files are displayed in the upper panel of Fig. 7.3 (we used
the same line styles as Lloyd-Davies et al. 2000). The pro-
files now lie on top of each other, i.e., their normalisation
does not depend on the system temperature (as opposed
to the result of the scaling in Lloyd-Davies et al. 2000). To
confirm this, one can do the same scaling with the central
adiabat values (at r = 0.1 × rv), which is shown in the
bottom panel of Fig. 7.3. Instead of finding an excess for
T < 4 keV as in the Fig. 5 of Lloyd-Davies et al. (2000),
we find now that all the systems lie on the same central
adiabat symbolised by the dashed line and giving directly
the value of K0 in our model (i.e., K0 = 102 keV cm2).
The slight dispersion can be attributed to the assump-
tion that the observation time equals the formation time
of a system. This clearly means that our whole approach
of taking into account not only hydrodynamic shocks but
also an entropy floor established before them is valid and
describes appropriately the dynamics of formation of clus-
ters and groups.

But, the main point of this rescaling is that, without
changing the adiabat profiles shape, it allows us to com-
pare them more directly. From the upper panel of Fig. 7.3,
it is obvious that the four profiles are very similar between
r = 0.05× rv (the mean cooling-flow radius, inside which
entropy loss is achieved by cooling) and the outer radius.
This means that our assumption of scaled self-similar adi-
abat profiles is indeed right, at least in the core of the
systems. This explains why our slope and normalisation
work so well for the LX−T and y0−T relations, which put
more weight on the core of the systems. It also enlights the
fact that our shape factor for the gas mass is less accu-
rate, since most of the mass lies at large radius where the
self-similarity assumption breaks down (see Appendix C).

7.4. Comparison with other results

First of all, let us remind the reader that, unlike most of
the current models of cluster and group equilibrium, we do
not predict the density and temperature profiles. Instead,
we are interested in integrated quantities as the luminos-
ity. As such, our model has not the predictive power of
some others, but allows us to find analytic expressions for
these integrated quantities. In particular, since we assume
isothermality and self-similarity of the adiabat profiles,
the density profiles do not change with mean temperature
(e.g., no evolution of β with T ), as Ponman et al. (1999)’s
analysis would suggest. The satisfying results we obtain
show first that the key point is the appropriate modeling
of the competition between shocks and an pre-existing en-
tropy floor. Second, this means as well that the prediction
of integrated quantities is not very sensitive to the precise
knowledge of the profiles and/or that our assumptions are
not far from reality (it is known β evolves very slightly
with temperature).

We have compared most of our analytic results with
predictions from semi-analytic models and found good
agreement (in particular for the trends of the gas fraction
with total mass and the SZ effect with temperature in low
temperature systems). Let us now compare the value of
the entropy floor we need to reproduce the curvature of
the LX−T relation with values assumed in other theoreti-
cal models of energy injection. Balogh et al. (1999) assume
a constant entropy injection value of ∼350 keV cm2 and
Tozzi & Norman (2001)’s model needs a value in the range
190−960 keV cm2 in order to steepen LX−T . These val-
ues, as noted by Lloyd-Davies et al. (2000), are higher
than the observed value, which are likely to be upper
limits. On the other hand, our model needs a value of
K0 = 102 keV cm2, well within the observational range
of 70−140h−1

50 keV cm2.

As we have indeed fitted this value to the observations,
it may be asked if we do not force in fact this agreement.
The answer is clearly no, as, first, the agreement of the
K − T relation with the observations does not guaran-
tee that the same value of K0 will provide the a good
description of the other relations (both their shape, via
the temperature at which the self-similarity is broken, T0,
and their normalisation) which range from radio to X-
ray data. Second, the other models reproduce as well the
K − T relation, together with the LX − T one (at least
Tozzi & Norman 2001’s model is compared to these ob-
servations) with the same high value of the entropy floor.
A lower value compatible with observations would not fit
this relation.

The main difference between our present work and
these models is the fact that their low temperature sys-
tems are entirely isentropic i.e., no shocks occur at all
in groups. This is the claimed approximation made by
Balogh et al. (1999), who want to investigate a limiting
model (which naturally fails also in the clusters’ mass
range). However, Tozzi & Norman (2001) model shocks
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and adiabatic infall, and it is not clear why shocks do not
raise the adiabat profiles of their groups.

This clearly shows that shocks can not be completely
suppressed in groups unless an unacceptably high entropy
floor is needed in order to break the self-similarity in the
LX− T relation. Our model takes shocks and the entropy
floor into account by construction both in clusters and
groups and is thus able to reproduce nicely all the X-ray
correlations with the observed value of K0.

8. Conclusion

Throughout this paper, we have shown that the adiabat
constituted a “key observable” in the ICM, not only be-
cause it is a record of the thermodynamic past history of
diffuse baryons in groups and clusters, but also because
it allowed us to derive for the first time unifying analytic
expression for the slope and normalisation of observed cor-
relations of groups and clusters in X-rays and SZ. We have
thus derived analytic expressions and their normalisation
for the LX − T , MICM − T , fgas − T , y0 − T and y0 − LX

correlations (for the latter, two limiting expressions have
been provided in the case of groups and of clusters respec-
tively). The Appendix A summarises these correlations
and gives the corresponding numerical values of their nor-
malisations. We will conclude by discussing some applica-
tions of the model.

Clusters of galaxies, and in particular their baryonic
content observed through its X-ray emission, have often
been used to provide cosmological constraints (Perrenod
1980; Kaiser 1986, Oukbir et al. 1997; Blanchard et al.
2000, and references therein). These studies have shown
that the cluster population can provide tight constraints,
but have also revealed two problems (apart from purely
statistical problems due to large error bars of e.g., the
temperature in high-redshift clusters): first, the difficulty
to model the luminosity in a cluster, mostly due to the fact
that it depends on the core properties, whose formation is
still uncertain. Second, the small available number of rich
clusters, in particular at high redshift, which precludes yet
a reliable use of these tests6.

We think that the present work, together with the new
generation of X-ray observatories, can alleviate both of
these problems. First, our model of the cluster luminosity
does rely on the physical processes being at work during
the formation of a cluster, and not on an hypothetical
density profile. Therefore, the luminosity does not depend
on an arbitrary core radius and is thus more reliable than
previous attempts (in particular, we don’t have to assume
anything on the core radius evolution like e.g., Romer
et al. 2001). Second, we extend the analytic relations to
the groups mass scale, taking into account the compe-
tition between an external entropy floor and hydrody-
namic shocks (thus recovering the curvature of the LX−T

6 It is paradoxical but amusing to note that this same small
number of high redshift clusters becomes a powerful test of the
total density of the universe (Donahue et al. 1998).

relation) and make predictions for other properties of
groups. This is useful since the group population is
thought (in a hierarchical structure formation cosmology)
to be much larger than rich clusters. However, its red-
shift evolution has never been used to constrain cosmol-
ogy, partly because of the lack of reliable data and partly
because no analytic model of the groups baryonic prop-
erties was available (extrapolating the cluster baryonic
properties was obviously wrong, as the recent observations
show). The first problem will be solved, at least locally, by
Chandra and especially XMM-Newton. Our model pro-
vides an attempt to solve the second problem. Of course,
groups will certainly be much more dispersed than clus-
ters (because the entropy injection will have more effect
on them, and any spatial variation of this injection level
will affect the properties of a given group), but the number
of groups detected will be large: Romer et al. (2001) have
estimated that more than 100 clusters with T > 2 keV
will be detected in a serendipitous survey for z < 0.2 (ir-
respective of the cosmology), a number 10 times higher
than for cluster with T > 4 keV and 50 times highers than
for T > 6 keV for a survey surface of∼800 deg2. The num-
ber of groups with T < 2 keV will obviously be superior,
certainly not by a factor 10 because of the reduced size and
steepening of the LX−T relation, but at least by a factor
of a few. This number of well observed groups (together
with pointed observations) will allow an unprecedent lo-
cal calibration of the group ensemble properties. Using
our model, it will be possible to use groups and clusters
to constrain cosmology and the cluster LF, TF and LX−T
evolution to add further constraints. Moreover, groups will
provide useful constraints on the total amount of reheating
the present universe underwent and its redshift evolution
if high redshift groups are available (see Sect. 7).
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Appendix A: Numerical values for the correlations

In the following appendix, we provide numerical expres-
sions for the normalisations of the different correlations
the present model predicts. These will thus be straight-
forward to use in another context. The temperature T is
in keV, and the normalisations were computed using a lo-
cal Hubble constant of H0 = 100h2/3 km s−1 Mpc−1 with
h2/3 = 2/3 . We included the dependence on h2/3 in each
of the following expressions7.

We first describe one relation (external to the model
and independent from it), the M − T relation, that we

7 We thus have h50 = 4/3 and h100 = 2/3 where
h50 = (H0/50) and h100 = (H0/100).
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used to relate the virial radius to the temperature. Then,
we write the different correlations presented in this work,
namely LX−T , MICM−T , fgas−T , y0−T and y0−LX.

A.1. The mass-temperature relation

This relation is crucial, in that it allows us to relate the
virial radius (where the shock is assumed to take place)
with the temperature of the system, via the definition
of M in terms of rv. The simulation results of (Evrard
et al. 1996) are frequently used for mass-temperature scal-
ing, but they seem to provide systematically a higher nor-
malisation than the observed one, whatever the method
used to measure M (Nevalainen et al. 2000 and references
therein). We used the observational results of Nevalainen
et al. (2000), derived from observed density and temper-
ature profile, because their sample, although small, goes
all the way from groups to clusters. These authors give
the M − T relation at different scaled radii, from r2000

to r500 (where r∆ is the radius whose mean interior den-
sity is ∆ times the critical density). Since Evrard et al.
(1996) have shown that, inside a radius r500, the baryonic
gas is in hydrostatic equilibrium to a very good approxi-
mation and that hydrostatic masses measured within this
radius should be reliable, we choose this radius to nor-
malise the M − T relation. Moreover, while at smaller
radius Nevalainen et al. (2000) find that the M − T re-
lation is significantly steeper (99.99% confidence at r1000)
than the self-similar prediction (M ∝ T 3/2), the slope they
measure at r500 is consistent with 3/2 (χ2/ν = 5.1/5, but
note that the best fit has a slope of 1.84)8. We thus used
throughout the paper the following relation:

M500 = M∗

(
T

T∗

)3/2

= 9.6× 1014M� h
−1
2/3

(
T

10 keV

)3/2

, (A.1)

which defines the values M∗ and T∗ used in the text. Each
time we speak about the virial radius in this paper, we
refer to the radius r500 related to M500 defined above, and
we will thus take ∆ = 500 throughout.

Finally, let us state that introducing a steeper slope for
the M − T relation is straightforward within the physical
scheme we used in this work, but does not change much
the predicted relations gathered in this appendix and their
agreement with observations. Since we wanted to discuss
the generic effect of shocks and preheating, the same ef-
fects which are thought to steepen the M −T relation, we
found natural to keep a self-similar scaling.

A.2. The predicted X-SZ-T correlations

We now compute the different normalisations given in
Eqs. (38), (43), (46), (55) and (62). For this purpose, we

8 Note that the slope at r500 was obtained using only rich
clusters, since groups are too faint to allow a detection this far
from the centre.

will use the values of M∗, T∗ and ∆ from the last section.
The critical density is defined as usual as:

ρ0
c =

3H2
0

8 πG
, (A.2)

and, for the luminosity, we will need the normalisation of
the cooling function, taken from Eke et al. (1998):

Λe(T ) = Λ0 T
1/2

= 1.2× 10−24 T 1/2 erg cm3 s−1 , (A.3)

where T is in keV.
Finally, we take for T0 the value computed from K0

in the Sect. 2.3.2 i.e., T0 = 2 keV and the values of the
shape factors QX, QSZ and QM computed in Appendix C.
Therefore, the only adjusted quantity used to produce these
relations is K0, which was fitted to the data of Helsdon &
Ponman (2000) in Sect. 2.3.3 to find K0 = 102 keV cm2.
Once this quantity was fixed by comparison with the cen-
tral entropy observations, no renormalisation of the fol-
lowing relations is allowed.

All the numbers are computed here at z = 0, but it is
easy, within a given cosmology, to extend the formulae in
the text to higher redshift (note that the value of K0(z)
must be assumed as well). The analytic correlations found
are then

• LX − T relation:

LX = 5.643× 1042 T 5

[
1 +

T

T0

]−3

h−2
2/3 erg s−1 (A.4)

• M ICM − T relation:

MICM = 2.405× 1012 T 3

[
1 +

T

T0

]−3/2

h−2
2/3 M� (A.5)

• fgas − T relation:

fgas = 0.0792T 3/2

[
1 +

T

T0

]−3/2

h−1
2/3 (A.6)

• y0 −T relation:

y0 = 3.506× 10−6 T 3

[
1 +

T

T0

]−3/2

h
−2/3
2/3 , (A.7)

which can be translated in central temperature decre-
ment as (using TCMB = 2.73 K and the RJ approxima-
tion)

∆T (0) = −1.914× 10−2 T 3

×
[
1 +

T

T0

]−3/2

h
−2/3
2/3 mK. (A.8)

• ∆T (0)−LX relation:

? for T � T 0 (rich clusters temperature range):

LX = 2.206× 1045

(
−∆T (0)

1 mK

)4/3

× h
−10/9
2/3 erg s−1 (A.9)
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? for T � T 0 (small groups temperature range):

LX = 2.133× 1045

(−∆T (0)
1 mK

)3/2

× h−1
2/3erg s−1. (A.10)

Appendix B: Infall velocity and mean temperature

In this Appendix, we will find an expression for the infall
velocity before the shock (noted v1) as a function of the
mean temperature of the accreting system. To this pur-
pose, the following reasonning in two steps is appropriate:
we first show that v2

1 ∝ φv provides a good approximation
and then derive a usefull expression for φv.

We will then compare our result to hydrodynamic sim-
ulations, which will validate the use of the analytic expres-
sion found in the groups mass range.

B.1. Reexpressing the infalling velocity

Let’s assume that the gas inflow is stationary. In a spher-
ical collapse model, the gas is assumed to be at rest at
a radius rta (the so-called “turn-around radius”) before
falling into the cluster potential. Since the gas will not be
subjected to many processes changing its internal energy
during this inflow, we can assume that the flow is isen-
tropic. Thus, applying the Bernouilli equation between rta
and rv (just before the shock) we obtain (see e.g. Landau
& Lifshitz 1959):

v2
1

2
+ ω1 + φv = ωta + φta (B.1)

where ω denotes the gas specific enthalpy (ω =
cpT with cp the specific heat at constant pressure).
Denoting ρta and ρ1 the densities at rta and rv and, the
following expression for v1 can easily be found:

v2
1 = −2φv

[
1− φta

φv
+ cp

T1

φv

(
1−

(
ρta

ρ1

)2/3
)]

. (B.2)

In the spherical collapse model, the density at rv is
∼8 times larger than at rta.

We can thus write:

v2
1 = −2φv

[
1− φta

φv
+
cp
4
T1

φv

]
. (B.3)

Obviously, in large mass systems, the last ratio will be
negligible i.e., the thermal energy of the gas will be negli-
gible when compared to its potential energy (the so-called
“cold inflow” hypothesis). As gas is preheated (i.e., as T1

rises) or as the mass of the system is lowered this assump-
tion is questioned, since the thermal content of the gas
will be of the same order of the kinetic and potential en-
ergy. Nevertheless, we will assume in the following that
this limiting behaviour only occurs at mass scales smaller
than groups of galaxies. We will show at the end of the ap-
pendix that hydrodynamic numerical simulations of struc-
ture formation in different cosmological models validate
this last assumption.

We have thus:

v2
1 = −2φv

(
1− φta

φv

)
. (B.4)

To take into account some uncertainties and shortcomings
of this crude treatment (as the fact that the infall is usu-
ally along filaments and so not spherical), we will write
the slightly more general formula:

v2
1 = −2 η φv, (B.5)

where η is considered as a constant. η could be calibrated
against numerical simulations (see e.g., Miniati et al. 2000)
or chosen so that the flow at infinite is the Hubble flow,
as in Cavaliere et al. (1998). When used to compute the
value of T0 in Sect. 2.3.2, η is determined by the former
method.

Note that the established fact that the square of the
infall velocity is proportionnal to the gravitational poten-
tial, both taken at the virial radius, is actually not a sur-
prise. Indeed, before the shock, the gas is thought to follow
the dark matter evolution, its velocity being equal to the
dark matter one up to the virial radius (see for exam-
ple the Fig. 15 of Frenk et al. 1999). Since it has been
shown that the dark matter infall velocity in a spherical
model scales as M1/3, while the mean potential φ ∝M/R
scales as M2/3 (Ryu & Kang 1997, based on the work of
Bertschinger 1985), it is thus natural that v2

1 ∝M2/3 ∝ φ.

B.2. Linking φv with T

We now look for a useful expression for φv without as-
suming any particular analytic expression for φ(r). First,
since the Poisson equation states:

∇2φ = 4πGρ, (B.6)

we can write any gravitational potential in the form:

φ(x) = 4πGρc r
2
v φ̃(x), (B.7)

where ρc is a characteristic density (the background cos-
mological density for example), rv is the virial radius, G
the gravitational constant and φ̃(x) is a dimensionless po-
tential with x = r/rv. Therefore we have in particular,

φv = 4πGρc r
2
v φ̃(1) . (B.8)

By using this as a general relation, we assumed implicitely
that φ̃(1) does not depend on the mass of the system.
However, numerical simulations indicate that the general
expression for the gravitational potential is indeed uni-
versal (i.e. it takes the same form in different cosmologi-
cal models), but its normalisation should depend slightly
on the mass via the so-called concentration parameter c
(Navarro et al. 1997, hereafter NFW). Indeed, using the
so-called NFW analytic expression, φv can be expressed
as (see for example  Lokas & Mamon 2001)9:

φv = 4πGρc r
2
v g(c) . (B.9)

9 Note that the function g(c) defined here differs from the
one adopted by  Lokas & Mamon (2001).
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Since in these models, c is a slowly varying function of
the mass (c(M) = (M/M15)−0.086 for a ΛCDM universe
at z = 0, M15 being the mass in units of 1015 M�) it is
easily shown that g(c) ∝ T 0.012, that is to say, g(c) can
be considered as constant to a very good approximation.
As a consequence, ignoring the mass dependency of φ̃(1)
in Eq. (B.8) is reasonnable and we will thus use Eq. (B.8)
as a definition of the virial radius gravitational potential.

An even more practical form for Eq. (B.8) does in-
volve the (supposed isothermal) ICM temperature T . It
is achievable through the use of the virial theorem. It in-
deed provides us with general relations between rv −M
and M − T in the following form:

rv =
(

3M
4 π∆ ρc

)1/3

(B.10)

M = M∗

(
T

T∗

)3/2

, (B.11)

where ∆ is the virial radius overdensity (taken through-
out this paper to be 500, see Appendix A), ρc is the
critical density and M∗ and T∗ are constants defined
in Appendix A. As a conclusion, we can now write
Eq. (B.8) as:

φv = 4πGρc φ̃(1)
(

3M∗
4π∆ ρc

)2/3(
T

T∗

)
(B.12)

= φ1

(
T

T∗

)
· (B.13)

Eventually, by combining Eqs. (B.13) and (B.5) we reach
the following relation describing the scaling of v2

1 with T :

v2
1 = −2ηφ1

(
T

T∗

)
. (B.14)

Equation (B.14) is particularly interesting since it can be
directly compared to the the results of hydrodynamic nu-
merical simulations. Miniati et al. (2000) have examined
the properties of shock waves around clusters and groups
of galaxies in two hydro+N -body realisations of two dif-
ferent cosmological models. Having selected all structures
with X-ray luminosity greater than 1041 erg/s, they found
that the relation between the mean temperature and the
infall velocity is given by an equation of the form (we only
quote their result for the ΛCDM cosmology, analogous ex-
pressions being found in the SCDM cosmology):

vs = vs0

(
T

Ts

)0.52

. (B.15)

with

vs0 = 1.9× 103 km s−1 and

Ts = 7.8× 107 K.

Their result spans a range from 106 to several 107 K,
i.e. from poor groups to clusters, and is analogous to

Eq. (B.14)10. This, together with the fact that secondary
infall models predict the same type of relation as the one
we deduced between v1 and φv, validates the assumption
of cold inflow that was made in deriving Eq. (B.5), even
for the group mass range.

Appendix C: The shape factors QX, QSZ and QM.

In this appendix, we evaluate the shape factors QX, QSZ

and QM, which enter the normalisation of the LX − T ,
y − T and MICM − T relations. These quantities could in
fact be considered as renormalisation constants obtained
by comparison with observations. We will instead show
here that they can be computed using a motivated model
for the adiabat profile. The model we present thus predicts
not only the shape but also the normalisation of the above
correlations.

C.1. Normalisation temperature

The normalisations of the three relations cited above are
defined in Eqs. (38), (42) and (54), where the temperature
is in keV. The temperature at which the normalisation
must be evaluated is obtained by equating the tempera-
ture shape function in each of these relations to 1. This is
illustrated in Fig. C.1, which shows the following functions
(the last two ones being the same):

LX(T ) =
T 5

[1 + T/T0]3
(solid line)

y(T ) =
T 3

[1 + T/T0]3/2
(dashed line)

MICM(T ) =
T 3

[1 + T/T0]3/2
(dashed line),

and their intersection with the horizontal unit line. We
can see that the normalisation temperature of the three
relations occurs at T ∼ 1.3 keV. These temperatures are
well into the groups temperature range, and we will thus
compute the normalisation in this regime. First of all, we
need an motivated analytic adiabat profile to compute the
integrals defining the three normalisation constants.

C.2. An analytic model for the adiabat profile

Groups have a low surface brightness in X-rays and are
thus difficult to observe up to their virial radius. Obtaining
a temperature profile at this radius is obviously even more
challenging. While the new generation of X-ray satellites
(Chandra and XMM-Newton in particular with its excep-
tional sensitivity) is expected to produce constraints on
low density regions, ROSAT (whose energy band was per-
fectly adapted to the groups observation) has provided
data mostly on the inner parts of these systems (see
10 We will take the exponent of Eq. (B.15) to be 1/2.
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Fig. C.1. Normalisation temperature of the LX−T (solid line),
y−T and MICM−T (dashed line) relations. The three relations
will thus be normalised at T ∼ 1.3 keV, in the groups mass
range.

e.g., Helsdon & Ponman 2000). Nevertheless, David et al.
(1996) have published adiabat profiles for two cool clus-
ters (T ∼ 1.5 keV) nearly reaching the virial radius (as
well as for even cooler groups, see their Fig. 10), using a
β−model for the density and the best-fit power-law model
for the temperature (despite large error bars). They found
a isentropic core, followed by a very modest increase com-
pared to clusters (where the virial value of the adiabat is
at least 20 times higher than the core value).

This can be easily understood, if one recalls that
groups are thought to accrete most of their gas adia-
batically, and should thus have constant adiabat profiles
(Balogh et al. 1999; Tozzi & Norman 2001). However,
this produces unacceptably large temperature gradients
in small groups and the quasi-absence of the cooling-
flow phenomenon, except in the largest clusters (Tozzi
& Norman 2001, see their Figs. 4c and 7b). It shows
that somewhere between the center and the virial radius,
shocks must increase somewhat the adiabat, in order to
lower the temperature gradient, giving rise to an adiabatic
inner core (much larger than the core radius) followed by
a modestly increasing adiabat profile11.

One can seek an analytic expression for the adia-
bat profile by making use of the isothermal β−model
(Cavaliere & Fusco-Femiano 1976). Suppose that the gas
density profile is describe by this model i.e.,

n(x) = n0

[
1 +

(
x

x0

)2
]−3β/2

, (C.1)

11 Note that HCG62, one of the best examples of relaxed
group (T ∼ 1 keV), has a steep declining temperature out-
side the inner core (see Fig. 4 of Finoguenov & Ponman 1999),
but has also an obvious cooling-flow.

where the radii are rescaled in units of rv and x0 is the core
radius. Assuming isothermality, the dimensionless adiabat
profile is then

f(x) =

[
1 +

(
x

x0

)2
]β
. (C.2)

Using the semi-analytic model already discussed in the
text (Dos Santos 2001, in preparation, see Sect. 7.2), we
found that, in an external preheated model (by QSOs or
SNs), the adiabat profile of groups and clusters can be de-
scribed approximately by the last equation with β = 1/2
and a core radius varying with mass. Even if the systems
modelled are not isothermal, this result is not surprising
as the shocks are expected to leave a linearly rising adia-
bat profile (hence the value of β, see Thomas & Couchman
1992; Tozzi & Norman 2001; Brighenti & Mathews 2001),
while the isentropic accretion of gas leaves a constant adi-
abat profile. Fixing β to 1/2, the core radius x0 deter-
mines the extend of the central isentropic core. We have
found that x0 = 0.7 reproduces approximately the adiabat
profile of small groups in our semi-analytic model, while
x = 0.1 reproduces its behaviour in rich clusters. This is in
line with the observational results of David et al. (1996)
showing that the profiles are much shallower in groups
than in clusters. Thus we will use β = 1/2 and x0 = 0.7
in Eq. (C.2) to compute the values of the shape factors.

C.3. The shape factor QX

The theoretical shape factor is defined by:

QX =
∫ 1

0

x2 dx
f3(x)

=
∫ 1

0

x2

[
1 +

( x

0.7

)2
]−3/2

∼ 0.1150.

This value is very close to the best-fit value (0.12, consider-
ing QX as an adjustable parameter) and undistinguishable
given the observational errors. Although the normalisation
has been computed in the groups mass ranges, it recovers
perfectly the slope and normalisation of rich clusters. We
will thus use QX = 0.115.

C.4. The shape factor QSZ

The shape factor for the y − T relation is given by:

QSZ =
∫ ∞

0

[
1 +

( x

0.7

)2
]−3/4

dx (C.3)

∼ 1.835.

Here again the normalisation is in very good agreement
with the observational data from Zhang & Wu (2000),
despite the large dispersion of the latter (see Fig. 6).
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C.5. The shape factor QM

The shape factor for the MICM − T relation is given by:

QM =
∫ 1

0

x2

[
1 +

( x

0.7

)2
]−3/4

∼ 0.1915.

The best-fit value to the data of Mohr et al. (1999 here-
after MME) is QM = 0.11 i.e., ∼40% lower than the value
we compute. However, apart from pure measurements un-
certainties and known biases12, several systematic effects
can cause this disagreement: first, the major part of the
45 clusters they study are not detected up to the ra-
dius r500. Thus, they extrapolate the data taking their
best-fit slope out to r500, which can be a source of errors.
Second, as MME explain, computing r500 requires a model
of the potential or a rescaling to the value of a given cluster
(they chose A1795 for the scaling of their virial relations).
If one of the assumptions made is erroneous, it is possi-
ble that their numbers quote a radius r∆ with ∆ 6= 500.
Indeed, if r500 is underestimated by only 20%, we obtain:

QM =
∫ 0.8

0

[
1 +

( x

0.7

)2
]−3/4

∼ 0.1136,

which is very close to the best-fit value. We use this last
value for QM in the MICM − T relation, as well as in the
fgas − T relation.

The luminosity of a cluster is dominated by the core
gas (since it scales as the square of the density) and the SZ
effect computed here is a central value (taking into account
the beam smearing effect), while the gas mass depends
mainly on the outer parts of the profile, where ouras-
sumption of self-similarity of the scaled adiabat profiles
is more likely to break down (see Sect. 7.3). This ex-
plains naturally why the predictions for QX and QSZ are
much more accurate than for QM. Nevertheless, we con-
sider the agreement between the theoretical values and
the observed normalisations very satisfying. The fact that
with the same model for the adiabat profile we can pre-
dict the correct normalisations of the cluster correlations
in two very different wavebands is obviously a sign of co-
herence of the whole scheme. Since the shape factors are
predicted, the only parameter of the model is the central
entropy in groups K0, which was fit to the observations of
central adiabat value.
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