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Abstract. We solve, and provide analytical expressions, for current-free magnetic configurations in the context of
initial setups of 3-dimensional simulations of astrophysical jets involving an accretion disk corona in hydrostatic
balance around a central object. These configurations which thread through the accretion disk and its corona
preserve the initial hydrostatic state. This work sets stage for future 3-dimensional jet simulations (including disk
rotation and mass-load) where launching, acceleration and collimation mechanisms can be investigated.
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1. Introduction

The most successful model of astrophysical jets is that of
magneto-hydrodynamic (MHD) driven winds (Blandford
& Payne 1982). In this model, the magnetic field is pre-
dicted to launch, accelerate and efficiently collimate the
jet. The advent of MHD codes over the last decade al-
lowed us to study the details of this model through the
use of time-dependent MHD simulations and confirm the
importance of the magnetic field. One point that has been
emphasized in many of these simulations is the importance
of properly setting up the initial state. A numerically sta-
ble initial setup makes the simulation tractable and allows
contact with theory. Here, we are particularly interested
in simulations as presented in Ouyed & Pudritz (1997a,
OPI) and Ouyed & Pudritz (1997b, OPII) focusing on the
technical aspect of the initial state.

The initial conditions as defined in OPI and OPII cor-
respond to a central object (a proto-star) surrounded by
a Keplerian disk and an overlying corona in hydrostatic
equilibrium. The disk has fixed properties and provides the
boundary conditions for the outflow. The time evolution
of the initial state is partly depicted by the momentum
equation (using the standard nomenclature),

ρ

(
∂v

∂t
+ (v · ∇)v

)
+∇p+ ρ∇Φ− J ×B = 0, (1)

and would, in general, be perturbed by the Lorentz force
of a magnetic field that threads through the accretion disk
and its corona. Therefore, all previous 2-dimensional (2-D)
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simulations (OPI&II) employ initialy current-free, J = 0,
magnetic fields where the condition for stability becomes

0 = −∇p
ρ
−∇Φ, (2)

at all time. This initial setup was successfully extended
to 3-dimensional (3-D) simulations in Ouyed et al. (2001,
OPC). However, the work presented in OPC was restricted
to the simple case of a uniform magnetic configuration
where the accretion disks is threaded by vertical field lines.
In this paper, we solve for non-uniform current-free mag-
netic fields in 3-D which would complete our 3-D initial
hydrostatic corona as defined in Eq. (2). The paper is or-
ganized as follows: in Sect. 2, we describe the force-free
equations defining our problem. In Sect. 3 we solve for the
current-free case and test the stability of these solutions
by evolving the initial setup in time. We introduce and
describe the JETSET tool developed for this purpose. We
conclude in Sect. 4.

2. Force-free configurations

Force-free configurations are characterized by

(J ×B = 0,∇ ·B = 0), (3)

corresponding to the standard two cases, J‖B, and J = 0.
We start with the case where currents are parallel to the
magnetic field lines. Or,

B =∇×
(
B

α

)
, (4)
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(here, α is constant), i.e. the vector potential is given by
1
αB (from B =∇×A). Thus we first solve for the mag-
netic field and then calculate the vector potential; recall
that in deriving B using the vector potential, ∇ ·B = 0
is numerically guaranteed to within machine round-off er-
rors. Here and in the rest of the paper, we adopt cylindri-
cal coordinates (r, φ, z) and we assume that the fields are
separable.

Using relation (4) and the fact that the magnetic field
is divergence free we arrive at:

α2B = −∇2B. (5)

This is a vector relation and therefore also holds for every
component. Let us write a component of the magnetic
field, B, as B and making use of our usual assumption of
separable variables we find:

B = R(r)Φ(φ)Z(z),

R = D(ρ, λ)Jρ
(√

α2 + λ2r
)
,

Φ = E(ρ, λ) sin(ρφ) + C(ρ, λ) cos(ρφ),
Z = A(ρ, λ)e−λ|z| (6)

where λ and ρ are constants of separation, and the un-
known functions A,C,D,E are to be determined from the
boundary conditions. The complete solution for B is the
integral over λ ranging from 0 to infinity, and a sum over
every ρ (Arfken & Weber 1995):

B(r, φ, z) =
∞∑
ρ=0

[∫ ∞
0

D(ρ, λ)Jρ
(√

α2 + λ2r
)
A(ρ, λ)

× e−λ|z| (E(ρ, λ) sin(ρφ) + C(ρ, λ) cos(ρφ))
]
.

For every component one finds two constants given
through Fourier expansion. That is, extra boundary condi-
tions are required. In our case for example, all components
of the magnetic field in the accretion disk must be spec-
ified. However, the integral equations remain difficult to
treat since the Bessel function is not linearly dependent
on λ, and analytical solutions are not straightforward. We
thus turn to the current-free case (α = 0) where the equa-
tions can be simplified.

3. Current-free configurations

Here, J = 0 is a necessary and sufficient condition to
guaranty the existence of a scalar field (ϕ) with the prop-
erty, ∇ϕ = B. As can be seen in Appendix A this greatly
simplifies our task of finding the initial configurations. We
investigate two kind of current-free magnetic fields, with
and without toroidal component (Bφ).

3.1. Bφ 6= 0

Here we do not demand that the toroidal field is zero in
the corona. We use the following boundary condition:

Bφ, 0 = (b rµ−1)× sin(kφ), (7)

where Bφ, 0 is the toroidal magnetic field in the disk, and b
a normalization factor. The general solution for the scalar
field is given in Appendix A where we also explain the
choice of such a φ dependence. We find,

ϕ(r, φ, z) = q(µ, k)b cos(kφ)
rk√

r2 + |z|2k−µ+2

× 2F1

(
k − µ+ 1

2
,
µ+ k

2
, k + 1,

r2

r2 + |z|2
)
,

q(µ, k) = 2µ−k+1 Γ
(

1
2 (k + µ+ 2)

)
Γ (k − µ+ 2)

Γ
(

1
2 (k − µ)

)
Γ (k + 1)

,

for 1− k < µ <
1
2
, (8)

where 2F1 is a hyper geometric function and Γ the gamma
function. The k = 2 case, for example, is a simple solu-
tion. The corresponding configurations once implemented
in the simulations remain stable in time. In the Bφ 6=
0 case, however, the corresponding jet simulations (in-
cluding mass-load and disk rotation) are prone to pinch
forces within few disk rotations. That is, the resulting
dynamics is more complex, and the jet more difficult to
track/investigate numerically. The Bφ = 0 configurations,
also adopted in OPI&II, turned out to be useful in many
ways; it allows for instance to demonstrate that the jet col-
limation can result from the self-generated toroidal field.
These we consider in details next.

3.2. Bφ = 0

In the current-free initial setup the differential equation
for the scalar field of the magnetic field (ϕ) reduces to the
Laplace equation (since ∇ ·B = 0):

∇2ϕ(r, φ, z) = 0. (9)

The corresponding scalar potential is found to be
(Appendix A),

ϕ(r, φ, z) = 2µbzµ
Γ(1 + µ

2 )Γ(−µ)
Γ(1− µ

2 )

× 2F1

(
1− µ

2
,−µ

2
, 1,−r

2

z2

)
,−2 < µ <

1
2
· (10)

Solution above corresponds to the following boundary con-
dition:

Br,0 = b rµ−1, (11)

where Br,0 is the radial component of the magnetic field
in the accretion disk. Recall that we do not simulate the
accretion disk (a fixed boundary in all of our simulations),
but only the jet and the overlying corona (z > 0).

We examined configurations for 2 different values of
µ (the radial dependence of the magnetic field); an open
(µ = −1) and a closed (µ = −2) configuration. The closed
configuration has the same radial dependence as a dipole
field, which is expected (in first approximation) around
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Fig. 1. Current-free solutions (Bφ = 0) – the open case (µ =
−1): shown here are the magnetic field lines at τ = 0 (top)
and at τ = 100 (bottom). In this figure and the rest of figures,
the blob in the center represents an iso-surface density around
the central object (the proto-star is less than few pixels in size
and cannot be seen in the figure). The rotation axis is shown
crossing the iso-surface density into the central object and is
in the plane of the paper. The accretion disk not shown here
is to the far left and is perpendicular to the rotation axis.

stars however ours is strictly a solution of the disk bound-
ary condition. The open configuration is the 3-D ana-
logue/extension of the open configuration used in OPI.
We implemented these 2 configurations in our initial setup
and let them evolve in time after applying a small per-
turbation to the density. No mass injection and no disk
rotation were set, and vz = vr = vφ = 0 in the corona
(z > 0.0). For the simulations we used the time-explicit
Eulerian MHD-code ZEUS3D (Stone & Norman 1992).

Cartesian coordinates, (x, y, z), are used for all simula-
tions. While being the natural system to use to avoid any
directional biases, it does introduce some of its own prob-
lems not encountered in the 2-D cylindrically symmetric
simulations. We refer the interested reader to OPC for
the technical reasons underlying the choice of Cartesian

Fig. 2. Current-free solutions (Bφ = 0) – the open case (µ =
−1; top) and the dipole case (µ = −2; bottom). Shown evolving
in time are the maximum values for the velocity (solid line), the
magnetic field strength (dotted line), and the density (dashed
lines). The dot-dashed line shows the maximum speed for the
propagation of Alfvén waves.

coordinates for such simulations. The disc is taken to lie
along the x–y plane, and the disc axis corresponds to the
z-axis. In units of the inside radius of the disc, ri, the simu-
lated region has dimensions (−15:+15,−15:+15, 0:+60),
and is divided into (95, 95, 120) uniform rectangular zones.

Figure 1 shows the magnetic field lines for the open
configuration at time τ = 0 (in units of inner Kepler
period) and at time τ = 100. The magnetic configu-
ration changes only slightly in time and the generated
currents are negligible. This is further demonstrated in
Fig. 2 (top panel) where we show the time evolution
of the maximum values for velocity, density and mag-
netic field strength. The induced velocity and slight vari-
ations in the magnetic field topology are signature of
Alfvén waves which as expected have no dynamical ef-
fects on the coronal material. The solution stays force-free
up to τ = 300 and no motion/jet is generated – as can
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Fig. 3. Current-free solutions (Bφ = 0) – the dipole case (µ =
−2). Shown are the magnetic field lines at τ = 0 (top) and at
τ = 100 (bottom).

further be checked from the movies of the simulations (at
http://www.fys.ku.dk/∼svart/Jets/). The closed con-
figuration (lower panel in Fig. 2) is also stable in time al-
though the induced errors are 20% larger than in the open
case (Fig. 3). Here as well the initial hydrostatic balance
is preserved up to τ = 300.

The simulations described above are easily imple-
mented numerically and if it is left unperturbed, the
corona will remain in perfect numerical balance to
within machine round-off errors. In any case, when
disk rotation and mass-load are taken into account,
the small perturbations are quickly and completely
washed out by the jet dynamics (τ � 50). The com-
plete set of simulations with and without disk rotation
and mass-loading can be visualized and compared at
http://www.fys.ku.dk/∼svart/Jets/.

3.3. The JETSET tool

We developed a tool, named JETSET, that generates ini-
tial states as described above. The JETSET main frame

is shown in Fig. 4. Once the grid dimensions, the phys-
ical scales and the appropriate coronal and disk param-
eters have been specified, JETSET performs a Newton-
Raphson method to find the correct density distribution
while the corresponding magnetic field configuration is
computed using the approach described in previous sec-
tions. The resulting Data (density, specific energies, ve-
locity, and magnetic field) describing the initial setup is
stored in an HDF (Hierarchical Data Format) file which
can then be read by the user’s code (such as ZEUS).
The magnetic field lines can be visualized (see Fig. 4)
as well as the density distribution around the central ob-
ject (see Fig. 5). JETSET is available (down-loadable) at
http://www.nordita.dk/∼ouyed/JETTOOLS/. Included
in the package are README and HELP files.

4. Conclusion

In this paper, we solved analytically for force-free solutions
of magnetic configurations which can be implemented in
3-D simulations of astrophysical jets (disk winds). These
configurations which thread the accretion disk and the
corona, we showed, do not perturb the initial hydrostatic
balance and are stable in time. While idealistic (developed
for ease of implementation and computation), they con-
stitute the first stage towards testing the effects of differ-
ent magnetic configurations on the simulated jets in 3-D.
Realistic configurations ought to reproduce basic features
of astrophysical jets, such as their cylindrical shape, their
knotty structure, and their stability.

Acknowledgements. We thank R. E. Pudritz and C. Rogers for
helpful discussions.

Appendix A: Current-free configurations

A.1. Bφ 6= 0

Here, the problem reduces to finding a general solution to
Laplace’s equation:

∇2ϕ = 0. (A.1)

Making a separation of variables in cylindrical coordi-
nates,

ϕ = Rϕ(r)Φϕ(φ)Zϕ(z) , (A.2)

we find (Gradshteyn & Ryznik),

ϕ(r, φ, z) =
∫ ∞

0

∞∑
ρ=0

D(ρ, λ)Jρ(λr)A(ρ, λ)e−λ|z|

× (E(ρ, λ) sin(ρφ) + C(ρ, λ) cos(ρφ)) dλ, (A.3)

where λ and ρ are constants of separation, and Jρ(λr)
the Bessel function. The unknown functions A,C,D,E
which can in fact be combined in two constants (see be-
low) within the Fourier space are to be determined from
the boundary conditions. Equation (A.3) is a superposi-
tion of the solutions to Rϕ,Φϕ and Zϕ. It shows that the
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Fig. 4. JETSET TOOL: JETSET sets initial states for astrophysical jet simulations in 3-D. The initial set up consists of a
corona in hydrostatic balance around a central object with current-free magnetic fields threading through the corona and the
underlying accretion disk (fixed boundary). JETSET solves for the correct density distribution around the central object and
the appropriate current-free magnetic field configuration once the two parameters, k and µ, are specified (see text). The coronal
material might consist of one pressure component (γ1 = 5/3, γ2 = 0) or two-pressure component (γ1 6= 0, γ2 6= 0, where γ1

and γ2 are the corresponding adiabatic indices). The initial magnetic field configuration can be visualized and saved into a
file. Figures similar to the upper panels in Figs. 1 and 2 can be generated (and saved into files) by JETSET as evident from
the renderer to the right. Further details on JETSET can be found in the README and HELP files included in the JETSET
package which can be down-loaded at http://www.nordita.dk/∼ouyed/JETTOOLS/.

constants may be determined from a single boundary con-
dition, for example the configuration of the toroidal mag-
netic field in the disk Bφ,0 = Bφ(r, φ, 0).

We now look at the Bφ =∇ϕ|φ component:

Bφ =
∞∑
ρ=0

[
cos(ρφ)

(
ρ

∫ ∞
0

S1,ρ(λ)e−λ|z|Jρ(λr)dλ
)

+

sin(ρφ)
(
−ρ
∫ ∞

0

S2,ρ(λ)e−λ|z|Jρ(λr)dλ
)]

where S1,ρ(λ) = D(ρ, λ)E(ρ, λ)A(ρ, λ) and S2,ρ(λ) =
D(ρ, λ)C(ρ, λ)A(ρ, λ).

Equation above is simply a Fourier expansion in the
toroidal dependence of the magnetic field. The inte-
grals before the trigonometric functions are the Fourier

coefficients; so we may write:∫ ∞
0

S1,ρ(λ)λe−λ|z|Jρ(λr)dλ =
1
πρ

∫ 2π

0

Bφ sin(ρφ)dφ,

−
∫ ∞

0

S2,ρ(λ)λe−λ|z|Jρ(λr)dλ =
1
πρ

∫ 2π

0

Bφ cos(ρφ)dφ,

where the right hand side is the expressions for the Fourier
coefficients. Note that S1,ρ(λ) and S2,ρ(λ) are the Hankel
transforms of the Fourier components of Bφ(r, φ, 0). That
is, for any given toroidal configuration of the magnetic
field in the disk, S1,ρ(λ) and S2,ρ(λ) are given by equations
above thus providing a simple procedure for determining
the scalar field.

Finally, note that the simplest magnetic configura-
tion possible is given by Sρ(λ) = 0 ∀ ρ 6= k which gives
us the boundary condition investigated in this paper
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Fig. 5. JETSET TOOL – Density contours as generated by JETSET for a single pressure component corona with γ1 = 5/3.
The left panel is in a plane parallel to the disk surface while the panel to the right shows the density contours in a plane
perpendicular to the disk surface and containing the disk rotational axis.

Bφ,0 = (b rµ−1)× sin(kφ) (including the k = 0 case with
no toroidal dependence); b is a scaling factor.

A.2. Bφ = 0

The corresponding scalar field is obtained by cancelling
the φ dependence in (A.3). The components Br and Bz
are then direct derivative of ϕ. For example, one can show
that

Bz =
∫ ∞

0

S(λ)λJ0(λr)e−λ|z|dλ,

where S(λ) is the Hankel transform of Bz(r, φ, 0).
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