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Abstract. We explore the morphological and dynamical evolution of galaxy clusters in simulations using scalar and
vector-valued Minkowski valuations and the concept of fundamental plane relations. In this context, three questions
are of fundamental interest: 1. How does the average cluster morphology depend on the cosmological background
model? 2. Is it possible to discriminate between different cosmological models using cluster substructure in a
statistically significant way? 3. How is the dynamical state of a cluster, especially its distance from a virial
equilibrium, correlated to its visual substructure? To answer these questions, we quantify cluster substructure
using a set of morphological order parameters constructed on the basis of the Minkowski valuations (MVs). The
dynamical state of a cluster is described using global cluster parameters: in certain spaces of such parameters
fundamental band-like structures are forming indicating the emergence of a virial equilibrium. We find that the
average distances from these fundamental structures are correlated to the average amount of cluster substructure
for our cluster samples during the time evolution. Furthermore, significant differences show up between the high-
and the low-Ωm models. We pay special attention to the redshift evolution of morphological characteristics and
find large differences between the cosmological models even for higher redshifts.

Key words. galaxies: clusters: general – X-rays: galaxies: clusters – methods: N-body simulations
– methods: statistical.

1. Introduction

Galaxy clusters may be thought to constitute a sort of
pocket guide to our Universe: although they are small in
comparison to cosmological scales, they contain important
information about the Universe as a whole. One line of
thought linking galaxy clusters and the background cos-
mology goes as follows: according to the hierarchical sce-
nario, galaxy clusters were assembled through the merg-
ing of smaller objects, which collapsed first. Richstone
et al. (1992) suggested that the cluster dynamical state
is related to its age, which in turn depends on average
on the present value of the cosmological density param-
eter Ωm. If, finally, the cluster dynamical state is mir-
rored by its substructure, one can establish a link be-
tween cluster morphology and the background cosmology
(“cosmology-morphology connection for galaxy clusters”,
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Evrard et al. 1993). Therefore, the cluster substructure
may be a powerful tool to study the background cosmol-
ogy. Summarising the results of the theoretical analyses
(see also Bartelmann et al. 1993), one can state that in
low-Ωm cosmologies the clusters should on average show a
smaller amount of substructure than in high-Ωm models.
Since this argument oversimplifies the complex dynamical
situation in galaxy clusters, it has to be complemented
using simulations, see e.g. Evrard et al. (1993). Note, that
we need a thorough definition and description of cluster
substructure for this argument1.

In this context, it is still a difficult task to describe both
the inner cluster state and the cluster morphology quanti-
tatively in a reliable way. – In this paper, therefore, we use

1 From an observational point of view, there is clear evidence
for the existence of substructure in galaxy clusters, both from
optical data (Geller & Beers 1982; Dressler & Shectman 1988;
West & Bothun 1990; Bird 1995) and from X-ray images (Jones
& Forman 1992; Böhringer 1994; Mohr et al. 1993).

Article published by EDP Sciences and available at http://www.aanda.org or 
http://dx.doi.org/10.1051/0004-6361:20011319

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20011319


C. Beisbart et al.: Morphological evolution of galaxy clusters 413

new tools to quantify cluster substructure as well as the
intrinsic cluster state. We analyse cluster simulations with
these tools and characterise the substructure of different
cluster components, its relation to inner cluster proper-
ties and the differences between cosmological background
models as traced by the averaged cluster substructure. In
particular, we test the theoretical assumptions behind the
“cosmology-morphology connection”.

So far, various methods have been used to quantify the
amount of substructure in galaxy clusters. In the optical
band several techniques (Dressler & Shectman 1988; West
& Bothun 1990; Bird 1994) use the galaxy positions and
velocities. Other methods are based on the hierarchical
clustering paradigm (Serna & Gerbal 1996; Gurzadyan &
Mazure 1998), wavelet analysis (Girardi et al. 1997), or
moments of the X-ray photon distribution (Dutta 1995).

X-ray images of galaxy clusters were also used to
study substructure; contrary to optical clusters, they are
scarcely contaminated by fore- and background effects.
Mohr et al. (1995) applied statistics based on the ax-
ial ratio and the centroid shift of isophotes (Mohr et al.
1993) to a sample of Einstein IPC cluster images. Buote
& Tsai (1995) introduced the power ratio method, a
technique based on the multipole expansion of the two-
dimensional potential generating the observed surface
X-ray brightness, see also Buote & Tsai (1996); Buote
& Xu (1997); Tsai & Buote (1996); Valdarnini et al.
(1999). Kolokotronis et al. (2001) studied the correlation
between substructures observed both in the optical and
X-ray bands.

Cosmological N -body simulations have been used to
test the dependence of cluster substructure on different
cosmological models (Evrard et al. 1993; Mohr et al. 1995;
Jing et al. 1995; Thomas et al. 1998; West et al. 1988).
Crone et al. (1996) applied different substructure statistics
to galaxy clusters obtained in different cosmological mod-
els from numerical simulations. They conclude that the
“centre-of-mass shift” is a better indicator to distinguish
between different models than, e.g., the Dressler Shectman
statistics (Dressler & Shectman 1988), which does not pro-
vide significant results (Knebe & Müller 2000). Pinkney
et al. (1996) tested several descriptors using N -body simu-
lations and recommended a battery of morphology param-
eters to balance the disadvantages of different methods.

So far, however, a unifying framework for the morpho-
logical description of galaxy clusters is missing. Several
aspects of cluster substructure have to be distinguished in
order to provide an exhaustive characterisation. Also the
connection to a possible cluster equilibrium has not yet
been scrutinised.

In this paper we apply Minkowski valuations (MVs)
(Mecke et al. 1994; Beisbart et al. 2001a,b) to cluster
substructure and use fundamental structures to quantify
the dynamical state of galaxy clusters. The Minkowski
framework provides mathematically solid and unifying
morphometric concepts, which can be applied to cluster
data without any statistical presumptions. These mea-
sures distinguish effectively between different aspects of

substructure and discriminate between different cosmo-
logical background models. Our interest is both method-
ological and physical: on the one hand, we are looking for
an appropriate method to quantify cluster substructure;
on the other hand, we ask physical questions like: how are
the Dark Matter (DM) and the gas distribution related to
each other?

For our investigation, we employ combined N -
body/hydrodynamic simulations. This simulation tech-
nique is particularly suitable for our purposes, since it
traces both the dark matter and the gas component of a
cluster. We construct relatively large data bases of cluster
images from the simulations which can be compared to
real cluster images.

The plan of the paper is as follows: after an explanation
of the simulations and cosmological models in Sect. 2, we
give an introduction into Minkowski valuations in Sect. 3.
We employ these tools in Sect. 4 in order to compare the
clusters within the different simulations. An analysis of
fundamental plane relations is presented in Sect. 5. We
draw our conclusions in Sect. 6.

2. The cosmological models and the simulations

In order to investigate cluster substructure in different cos-
mological models, a data base of galaxy clusters was gen-
erated on the base of TREESPH simulations. Three back-
ground cosmologies were chosen differing both in terms of
the values of the cosmological parameters and the power
spectra. We restricted ourselves to CDM models; the sim-
ulations are described in more detail in Valdarnini et al.
(1999), where also a morphological analysis was done us-
ing the power ratios (PRs, see Buote & Tsai 1995). We
extend this work in several directions, e.g. by probing the
morphological evolution and by connecting cluster sub-
structure and inner dynamical cluster state.

Since observations indicate that the curvature param-
eter ΩK vanishes (see for instance de Bernardis et al.
2000) we considered three spatially flat cosmological mod-
els, namely two high-Ωm models (a standard Cold Dark
Matter model – CDM – and a model where the Dark
Matter consists of a mixture of massive neutrinos and Cold
Dark Matter – CHDM) and one low-Ωm model (a model
with a non-vanishing cosmological constant – ΛCDM). For
the Hubble parameter we chose h = 0.5 for the CDM and
the CHDM model, and h = 0.7 for the ΛCDM model;
here, as usual, the Hubble constant is written in the form
H0 = 100h kms−1 Mpc−1.

With respect to the power spectra comprising the in-
fluence of the initial matter composition on structure for-
mation we adopted a primeval spectral index of n = 1
and selected a baryon density parameter of Ωbh

2 = 0.015.
In the CHDM model we had one massive neutrino with
mass mν = 4.65 eV, yielding a HDM density parameter
Ωh = 0.2. In the ΛCDM model the vacuum contribution
to the energy density was ΩΛ = 0.7 in accordance with re-
cent observations of Supernovae (Perlmutter et al. 1999).
Therefore, the density parameter of matter Ωm was 1 for
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CDM and CHDM, and 0.3 for ΛCDM. Since we are deal-
ing with galaxy clusters and need a fair number of them,
all models were normalised in order to match the present-
day cluster abundance nc(M > Mc) = 4 × 10−6 h3 for
Mc = 4.2 h−1 1014 M� (Eke et al. 1996; Girardi et al.
1997). Using these normalisations only the ΛCDM model
is consistent with the measured COBE quadrupole mo-
ment at the 1σ level. In order to reduce the influence
of cosmic variance the same random numbers were used
to set the initial conditions for all cosmological models.
Therefore we roughly look at the same clusters in all
cosmologies.

The cluster simulation technique consisted of two
steps: first for each model a large collisionless N -body
simulation was performed using a P3M code in a box
of length L = 200 a h−1 Mpc, where a is the cosmologi-
cal scale factor being one at present day. We considered
Np = 106 particles for the CDM and CHDM models,
each, while Np = 843 particles were chosen for the ΛCDM
model, the only low-density cosmology investigated here;
thus the mass of one simulation particle is approximately
equal in all cosmological models. The simulations were
run starting from an initial redshift zin, depending on the
model (for more details see Valdarnini et al. 1999), down
to z = 0. At the final redshift we identified galaxy clusters
using a friend-of-friend algorithm in order to detect over-
densities in excess of '200 Ω−0.6

m . For our further analyses,
we took into account only the 40 most massive clusters.

As a second step we applied a multi-mass technique
(Katz & White 1993; Navarro et al. 1995): for each clus-
ter we carried out a hydrodynamic TREESPH simulation
in a smaller box starting from zin. For this we identified
all cluster particles within r200 (where the cluster den-
sity is about 200 Ω−0.6

m times the background density) at
z = 0. These particles were backtracked to zin in the
original cosmological simulation box. For each cluster a
cube enclosing all of these particles was constructed; its
size Lc was ranging from 15 to 25 h−1 Mpc. A higher-
resolution lattice of NL = 223 grid points then was set
into these cubes. Different lattices were used for the dif-
ferent mass components; to avoid singularities these lat-
tices were shifted with respect to each other by 1/2 of the
grid constant along each spatial direction. For the CHDM
simulations the hot particles bear a small initial peculiar
velocity following a Fermi-Dirac distribution with Fermi
velocity v0 = 5(1+zin)(10 eV/mν) km s−1. For the gas par-
ticles we started with an initial temperature Ti = 104 K.
The TREESPH simulation was then run using all particles
which lie inside a sphere of radius Lc around the centres
of the cubes.

The gravitational softening parameters ε were the
same for all clusters within each simulation and cosmo-
logical model. For the gas particles they were chosen to
be εgas = 80, 100 , 60 kpc for the CDM, the CHDM , and
most of the ΛCDM clusters, respectively. However, for the
five most massive ΛCDM clusters εgas was set to 80 kpc.
As softening parameters for the Dark Matter particles we
took εd = 200, 231, 125 kpc for the CDM, CHDM, and

ΛCDM model, respectively. For the simulation particles
we applied the scaling εi ∝ m1/3

i . Note, that the softening
lengths were fixed within proper physical space; however,
the redshift zin is chosen in such a way, that the mean
particle separation is always smaller than the softening
length. The spatial resolution of the simulations can be
estimated by the ratio εgas/r200, which never exceeds a
value of about 0.04.

The numerical integrations were performed with a tol-
erance parameter θ = 0.7 and using a leap-frog scheme
for the time integration; the minimum time step allowed
was 3 × 106 years for the gas particles and 6 × 106 years
for the DM part. Viscosity was treated as in Hernquist
& Katz (1989) with α = 1 and β = 2. The effects of
heating and cooling were not considered in the simula-
tions. Tests assessing the quality of the simulations are
described in Valdarnini et al. (1999). We saved numer-
ical outputs at different redshifts, such that the cluster
morphological evolutions could be investigated within the
different models.

Using the simulations we generated cluster images
which mimic observations in a realistic manner as follows:
the gas density was estimated on a cubic grid with a grid
constant of 0.03 h−1 Mpc for each model. We took the
square of this density at each grid point and calculated the
approximate integral of ρ2 along the line of sight orthogo-
nal to a random plane (it is the same random plane for all
clusters, simulations, and redshifts), with 101×101 pixels.
We considered the cluster as approximately isothermal,
such that the X-ray emissivity is just proportional to this
integral (see, e.g., Tsai & Buote 1996).

We applied the same method also to the DM particles;
evidently, this does not lead to a physically observable
quantity. However, in this way we get the emissivity we
would obtain if the gas distribution would trace the DM (a
constant ratio between gas and DM distribution drops out
in our analysis). We show both an X-ray and a DM-image
in Fig. 1. The images are analysed using the Minkowski
valuations, which are described in the next section.

3. Minkowski valuations

The Minkowski valuations (MVs) provide an elegant and
in a certain sense unique description of spatial data. They
were introduced into cosmology by Mecke et al. (1994)
and have been applied to answer a number of questions
regarding the morphology of the large-scale structure, see,
e.g. Kerscher et al. (1997, 1998), Schmalzing & Gorski
(1998), Sahni et al. (1998), Schmalzing et al. (1999),
Kerscher et al. (2001). So far, they were employed mainly
in situations where perturbations of a homogeneous back-
ground were to be expected and the amount of clustering
had to be quantified. For galaxy clusters, however, the
situation is different. Galaxy clusters are intrinsically in-
homogeneous systems, thus the main issue is how far their
structure is away from a symmetric and substructure-poor
state which does not show the influence of recent mergers.
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Fig. 1. Two of the simulated cluster images to be analysed. They show the X-ray image of one cluster in the ΛCDM model at
redshift zero (left panel) and the corresponding pseudo-DM-image, where the gas density has been replaced by the DM-density
(right panel). Both images are sampled within a circle of radius 1.5 h−1 Mpc around the peak of the gas/DM-surface brightness,
respectively. See the main text for a further description of the image construction.

For this reason, additionally to the scalar Minkowski
functionals, we use vector-valued Minkowski valuations
(also known as “Quermaß vectors”), which feature di-
rectional information2. In this section we give a short
overview of both the scalar and the vector-valued MVs.

For a general approach, let us consider patterns
P,Q, ..., i.e. compact sets within Euclidean space. A mor-
phometric (geometrical and topological) description of
such spatial patterns is adequate, if it obeys a number
of covariance properties specifying how the descriptors
change if the pattern is transformed. The Minkowski val-
uations are defined by three types of covariances.

1. The first class of covariance refers to motions in
space: a morphological descriptor should behave in a
well-defined way, if the pattern is moved around in
space. The scalar Minkowski functionals are motion-
invariant, whereas the vector-valued MVs transform
like vectors (motion equivariance).

2. Secondly, the descriptors should obey a simple rule
specifying how they sum up for combined patterns
whose set union is constructed. Both classes of
Minkowski valuations V obey the additivity:

V (P ∪Q) = V (P ) + V (Q)− V (P ∩Q). (1)

3. Moreover, continuity states that a descriptor should
change continuously if the pattern is distorted
slightly3.

These simple properties already define the MVs, since –
at least on the convex ring4 – the Theorem of Hadwiger

2 We reserve the name “Minkowski functionals” to the scalar
Minkowski functionals. The entirety of both scalar and vector-
valued Minkowski measures is referred to as “Minkowski valu-
ations”.

3 A closer analysis shows that this requirement can be only
imposed for convex bodies.

4 The convex ring comprises all finite unions of convex
bodies.

(Hadwiger 1957; Hadwiger & Schneider 1971) guarantees
that in d dimensions, only (d+1) of such measures – either
scalar- or vector-valued ones – are linearly independent.

Because of the structure of our cluster data, we con-
centrate on the case of d = 2. Here, the Minkowski func-
tionals have intuitive meanings: V0 is the surface content
of the pattern, V1 its length of circumference, and V2 its
Euler characteristic χ, which counts the components of
the cluster and subtracts the number of holes. Note, that
all of these functionals can be expressed as an integral: V0

obviously is the two-dimensional volume integral of the
pattern, V1 is its (one-dimensional) surface integral, and
V2 weights each surface element dS with the local cur-
vature κ. This integral representation is also valid for the
vector-valued Minkowski valuations; in this case, addition-
ally, the integrals are weighted with the position vector;
therefore, the Quermaß vectors are spatial moments of the
scalar Minkowski functionals5. Summarising we consider
the following measures:

V0 =
∫
P

dV , V 0 =
∫
P

dV x,

V1 =
∫
∂P dS , V 1 =

∫
∂P dSx,

V2 =
∫
∂P dSκ , V 2 =

∫
∂P dSκx,

(2)

where κ refers to the local curvature. – It is convenient to
divide the vectors by the corresponding scalars to arrive
at the (curvature) centroids6:

pi ≡
V i

Vi
· (3)

5 More precisely, they are first-order moments. Higher mo-
ments are investigated as Minkowski tensors in forthcoming
work (Beisbart et al. 2001).

6 In the following we speak of “centroids” or “curvature
centroids”, the latter term becomes more plausible in higher
dimensions, where almost all centroids are connected to
curvature.
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The centroids localise individual morphological features.
In particular, they coincide with the symmetry centre for
spherically symmetric patterns. On the other hand, cen-
troids constituting a finite triangle indicate the presence
of asymmetry.

Note, that the MVs obey covariance properties
with respect to a scaling of the pattern P , too: if
we scale the pattern by α > 0 to get αP =
{αx|x ∈ P}, the scalar Minkowski functionals trans-
form like Vi(αP ) = αd−iVi(P ); the vectors transform
like V i(αP ) = αd−i+1V i(P ). This is important since we
sometimes have to compare data of different size.

Obviously, cluster images are not patterns in the above
sense, but rather consist of galaxy positions or pixelised
maps reflecting the surface brightness within a certain
energy band. Thus, we have to construct patterns from
the cluster data. Here we use the excursion set approach
where we smooth the original data using a Gaussian ker-
nel in order to construct a realization of a field u(x). The
excursion sets

Mw = {x|u(x) > w} (4)

are analysed with the aid of the Minkowski valuations.
Varying the density threshold w allows us to probe dif-
ferent regions of the cluster. The smoothing both reduces
possible noise and picks out a scale of interest or resolution
beneath which substructure is no longer resolved.

The MVs, represented as functions of the density
threshold, contain very detailed information. In this pa-
per, however, we want to compare cluster images drawn
from a larger base of simulated galaxy clusters. We are
therefore interested in the average morphological cluster
evolution in different cosmologies. In order to condense
the detailed information present in the MVs, we construct
robust structure functions which allow us to compare clus-
ters of different size statistically.

This can be done by integrating over the density
thresholds and weighting with functions of the Minkowski
valuations. We define an average over different density
thresholds via

〈f〉u ≡
1

umax − umin

∫ umax

umin

duf. (5)

Here, we consider three classes of robust structure func-
tions, which feature different aspects of the substructure
and span a morphological phase space. We distinguish the
following three classes of substructure, which are quanti-
fied using one or more structure functions:

1. the clumpiness C ≡
√
〈(χ− 1)2〉u is a measure of the

number of subsystems in a cluster;
2. the shape and asymmetry parameters (A0 ≡
〈Area(4(pj))〉u, A1 = 〈perimeter(4(pj))〉u) refer to
the degree of asymmetry and the global shape of the
cluster (“is the cluster spherical or elongated?”); here
we use the fact that curvature centroids which do
not coincide within one point indicate the presence
of asymmetry. In particular, the size of the triangle

4(pj) which connects the curvature centroids (mea-
sured by its area and perimeter) serves as a measure
of the asymmetry present within the cluster;

3. the shift parameters Si=0,1,2 ≡
√
〈|pi − 〈pi〉u|2〉u ac-

count for the variation or shift of morphological prop-
erties in a quantitative way by considering different
density thresholds (these parameters are generalisa-
tions of the frequently used centre-of-mass shift and
centroid variation, see Crone et al. 1996; Mohr et al.
1993, 1995)7.

An effective method to calculate Minkowski valua-
tions from pixelised maps can be developed in analogy
to Schmalzing & Buchert (1997) and is given in Beisbart
et al. (2001a).

4. Cluster substructure and the background
cosmology

To start our analysis of the simulated clusters, we probe
the connection between the background cosmology and
the cluster morphology. Since in this case not so much the
substructure of individual clusters rather than the mean
morphology is of interest, we define cluster samples con-
sisting of all clusters at one redshift within one model
(unless otherwise stated we analyse one random projec-
tion per cluster)8. In order to trace the mean substruc-
ture evolution, we average the structure functions over all
clusters within one sample.

What is the amount of cluster substructure, and how
does it evolve within the three cosmological models? –
The simulated clusters are “observed” within a quadratic
window of 3 h−1 Mpc width centred at the peak position
of the surface brightness. The data are smoothed using
a Gaussian kernel with different smoothing lengths in or-
der to reduce the sensitivity to noise and to probe different
scales of the substructure. We concentrate on intermediate
values of the smoothing scale λ (λ ∼ 0.05−0.15 h−1 Mpc,
Cen 1997 employs values of the same order of magni-
tude)9. To define the cluster on the image, we draw circles
around the peak with radii rw = 0.8, 1.0, 1.2, 1.4 h−1 Mpc
(this definition is in the spirit of Abell’s cluster identifica-
tion in the optical, see Abell 1958, we call this circle the
cluster window) and neglect the rest. The integration limit
umin in Eq. (5) is chosen to be twelve times the background
which is determined from the rest of the image similarly as
in Böhringer et al. (2000), umax in Eq. (5) is the maximum
cluster surface brightness.

7 It turns out that S2 is closely related to the clumpiness.
– For the sequel we concentrate on the structure functions C,
A1, and S1. We successfully tested the robustness of these latter
structure functions.

8 On account of applications below, we discarded a few clus-
ters which showed obvious pathologies such as a strong bi-
modality. We have 39 clusters for the CDM model, 37 for the
CHDM, and 35 for the ΛCDM model.

9 A smoothing length of 0.05 h−1 Mpc is smaller or equal
than the gravitational softening length for the gas and not
much smaller than that one for the DM.
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Fig. 2. The averaged morphological evolution of the galaxy clusters in our three cosmological models. The ensemble-averaged
structure functions clumpiness, shape and asymmetry, and shift of morphological properties were determined from the X-ray
luminosity for a smoothing length of λ = 0.05 h−1 Mpc and are shown vs. redshift (first row). CDM: solid line; CHDM: short
dashed line; ΛCDM: long dashed line. We consider a spherical window with radius rw = 1.4 h−1 Mpc; C is dimensionless; A1

and S1 are given in units of (h−1 Mpc)2 and h−1 Mpc, respectively. In the second row we show the A′1 and S′1, where A1 and
S1 were scaled to cluster size (an estimate of the half light radius) in order to get dimensionless parameters.

In Fig. 2 we show results for the X-ray cluster morphol-
ogy within the three models having applied a smoothing
length of 0.05 h−1 Mpc. A couple of things are obvious
at first glance: there is a significant difference between
the high-Ωm models (CDM and CHDM) and the low-Ωm

model (ΛCDM). These differences are visible in most of
the structure functions and are in accordance with the the-
oretical expectations: the low-Ωm model shows by far less
substructure than the other two models – at least for most
redshifts investigated here. The CDM and CHDM models,
however, do not seem to be distinguished well. Therefore,
the morphology-cosmology connection is mainly sensitive
to the values of the cosmological parameters, but performs
poorly in discriminating between different power spectra.
The clumpiness is particularly sensitive. – Regarding the
redshift evolution, a clear trend is visible towards more re-
laxed and substructure-poor clusters. In particular, there
are also large morphological differences between the mod-
els at higher redshifts. Morphological evolution of galaxy
clusters may therefore serve as a more sensitive test than
the present-day cluster morphology. Note, that the aver-
aged morphology evolution still looks relatively spiky. The
reason is that for individual clusters the evolution of the
structure functions proceeds in a discontinuous manner,
when subclumps enter the cluster window. Therefore, one

has to average over several clusters in order to get a typical
morphological cluster evolution.

The structure functions Ai and Si have a dimension
and therefore quantify the absolute amount of substruc-
ture. To investigate the substructure relative to cluster
size, we normalise A1 and S1 to the individual cluster size
estimated via the two-dimensional half-light radius around
the peak of the X-ray surface brightness. As visible from
the bottom row of Fig. 2, the qualitative evolution and
the differences between the models are similar as before.

So far we concentrated on the morphological evolution
as traced by the X-ray luminosity and thus the X-ray gas.
But is also the DM morphology different for the cosmolog-
ical models? The results in Fig. 3 show the mean substruc-
ture evolution for galaxy clusters (λ = 0.05 h−1 Mpc) and
indicate that the DM morphology in clusters is even more
sensitive to the cosmological background than the gas.

In order to strengthen our claims and to compare the
performance of the gas- and the DM-morphology in a sys-
tematic way, we take into account the whole distribution
of the structure functions for our cluster samples. The
Kolmogorov-Smirnow test is a suitable tool to answer the
question whether two data samples are likely to be drawn
from the same distribution. It measures the distance
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Fig. 3. The morphological evolution of the DM within the clusters. The ensemble-averaged structure functions clumpiness, shape
and asymmetry, and shift of morphological properties for a smoothing length of 0.05 h−1 Mpc are shown vs. redshift. CDM: solid
line; CHDM: short dashed line; ΛCDM: long dashed line. Contrary to Fig. 2, here we probe the DM. We consider a spherical
window of radius rw = 1.4 h−1 Mpc; for the units see the caption of Fig. 2. This time, we also show the one-sigma fluctuations
around the average structure functions for the ΛCDM model. Note, that large fluctuations are to be expected on physical
grounds because of the wide range of clusters investigated, having different formation times and environments. We conclude
that one has to consider the whole morphology distribution within the samples in order to get significant claims regarding the
background cosmology (see below).

between two cumulative distributions D1(X) = p(x < X)
and D2 (estimated from the empirical data) via

dKS = max
x∈R
{|D1(x)−D2(x)|}· (6)

For any value of dKS one can estimate the probability pKS

that the same random process generates two samples be-
ing “farther away” from each other than dKS. If dKS is
large and, accordingly, pKS is small, the distributions un-
der investigation are likely to stem from two different en-
sembles. Table 1 presents results of a KS test for redshift
z = 0 and a smoothing length of λ = 0.05 h−1 Mpc. The
small values of pKS show that the distinction of the cosmo-
logical models by means of the structure functions is effec-
tive regarding the values of the cosmological parameters.
A systematic imprint of the power spectrum on cluster
morphology, however, does not seem to be noticeable. The
DM is even better than the gas in discriminating between
the background cosmologies. For instance, in comparing
the CDM and the ΛCDM model, the probability of the
null hypothesis is smaller than 10−5 using the clumpiness
(λ = 0.1 h−1 Mpc).

So far, we investigated only one smoothing scale and
one size of the cluster window; but one may ask which
cluster regions are most interesting for a distinction be-
tween cosmological models and which smoothing lengths
are optimal for our purposes. In order to answer these
questions, we first focus on the gas and estimate our struc-
ture functions for all cluster samples at redshift z = 0 for a
number of smoothing lengths and scales of the cluster win-
dow. For each window and smoothing scale we calculate
the KS-distances between our three models. The results
show that for the clumpiness small smoothing lengths λ
are more favourable than larger ones. For lower resolu-
tions, therefore, the subclumps are smeared out, and the
clumpiness is dominated by random fluctuations.

On the other hand, the discriminative power of the
clumpiness is enhanced for larger scales of the window.
The reason is that subclumps which have not yet merged
with the main cluster component are to be found at the
outer cluster parts. The other structure functions mostly
depend only relatively weakly on the window scale. We
conclude that the outer cluster regions, which probably
have not yet been virialised, are of more interest for
the cosmologist. Moreover, the values of the structure
functions rise for larger windows. This confirms results
by Valdarnini et al. (1999), who found a similar behaviour
(see, e.g., their Table 5). For the DM morphology one ob-
tains comparable results.

5. Fundamental plane relations

Using cluster simulations one can test the basic assump-
tion behind the morphology-cosmology connection pre-
suming that the morphology of a cluster mirrors its inner
dynamical state reliably. In this section we try to bring to-
gether morphology and inner state of our galaxy clusters.
Mostly, we focus on the ΛCDM model as the nowadays
favoured one.

Observationally there is evidence that clusters of
galaxies undergo a dynamical evolution leading to a
sort of equilibrium. This equilibrium seems to be mani-
fest in fundamental plane relations holding within three-
dimensional spaces of global cluster parameters where
clusters tend to populate a plane. Since the cluster param-
eters are logarithms of observable quantities, the funda-
mental plane (FP) corresponds to a power law constraint
among the real cluster parameters. Usually fundamental
plane relations are explained in terms of the virial the-
orem of Chandrasekhar & Lee (1968), which, however, is
strictly valid only for isolated systems (for a discussion see
Fritsch & Buchert 1999).



C. Beisbart et al.: Morphological evolution of galaxy clusters 419

Table 1. The discriminative power of the structure functions regarding the cosmological background models. The X-ray mor-
phology is considered for a smoothing length of λ = 0.05 h−1 Mpc and at redshift zero. For each pair of background models, we
calculate the Kolmogorov-Smirnow distance dKS between the distributions of the structure functions as well as the probability
of the nullhypothesis. As one can see, the gas substructure clearly discriminates between the high- and the low-Ωm models.

Gas, rw = 1.40 h−1 Mpc, z = 0, λ = 0.05 h−1 Mpc

CDM – ΛCDM CHDM – ΛCDM CDM – CHDM

dKS pKS dKS pKS dKS pKS

C 0.29 7.7% 0.31 4.5% 0.17 57.7%

A1 0.35 1.6% 0.40 0.4% 0.12 91.4%

S1 0.36 1.2% 0.38 0.7% 0.15 71.8%

Table 2. Summary of the cluster parameter spaces investigated: the ith parameter space is spanned by the parameters P j=0,1,2
i

for i = 1, ..., 3.

Par. Space i Parameters P ji

No. j = 0 j = 1 j = 2

i = 1 log
�
M200/(1015 h−1 M�)

�
log

�
rh/(100 h−1 kpc)

�
log

�
T/(107K)

�

i = 2 log
�
M200/(1015 h−1 M�)

�
log

�
rh/(100 h−1 kpc)

�
log

�
LX/(1043 ergs−1 h−2)

�

i = 3 log
�
M200/(1015 h−1 M�)

�
log

�
rh/(100 h−1 kpc)

�
log

�
σv/(102 km s−1)

�

There are several interesting spaces of global cluster
parameters, depending on whether optical or X-ray data
are available. Usually, the scale of the cluster, an estimate
of its mass and a quantity related to its kinetic energy
like the velocity dispersion of the galaxies or the temper-
ature of the X-ray emitting gas are considered, see, e.g.,
Schaeffer et al. (1993), Adami et al. (1998) for optical
fundamental planes and Annis (1994), Fritsch & Buchert
(1999), Fujita & Takahara (1999) for X-ray clusters. In
each case, indirectly, the potential and the kinetic energy
are referred to.

Fritsch & Buchert (1999) showed that the substructure
of a cluster is correlated to its distance from the funda-
mental plane using the COSMOS/APM and the ROSAT
data. In the spirit of their work, we try to establish a
similar connection for simulated X-ray clusters.

5.1. Fundamental plane relations for the simulated
clusters

Using our simulated clusters, we test three possible pa-
rameter spaces spanned by: 1. the mass, the half-light-
radius, and the emission-weighted X-ray temperature; 2.
the mass, the half-mass-radius, and the X-ray luminosity;
3. the mass, the half-mass-radius, and the velocity dis-
persion. In all of those global parameter spaces, one can
observe a band-like fundamental structure. This thin band
may be fitted either by a plane or a line. In Table 2 the
global cluster parameters are summarised using a compact
notation which we will use from now on.

The parameters defining the different cluster param-
eter spaces are estimated from the simulations as fol-
lows: the cluster mass is quantified via M200 contained
within an overdensity δc times the critical density ρc:
M200 = 4π

3 δcρcr
3
200, where δc ' 178 · Ω−0.45

m in a flat

cosmology (Coles & Lucchin 1994) and where r200 is
the size of this overdensity. r200 as well as rh are de-
termined from the three-dimensional mass distribution
around the density maximum, rh is the half-mass ra-
dius. Tem denotes the emission-weighted temperature of
the gas, calculated from the gas thermal energy assuming
an ideal gas. The bolometric X-ray luminosity is defined
as LX =

∫
dV ( ρgas

µmp
)2Λc, where ρgas is the gas density,

µ = 0.6 the mean molecular weight, mP the proton mass,
and Λc the cooling function. In order to perform the vol-
ume integration, the standard SPH estimator has been
applied (Navarro et al. 1995), the summation includes all
particles within the virial radius r200. The velocity disper-
sion is estimated from all types of simulation particles.

Before investigating the relationships between these
parameters, we ask whether the distributions of these pa-
rameters are consistent with each other for the different
cosmological models (in the sense of the KS test). We find
consistency apart from the luminosity (which is higher
on average for the ΛCDM model) and the half-light ra-
dius (clusters seem to be more compact within the CHDM
model).

We fit a plane and a line to each cluster sample sep-
arately (one sample means one cosmological model at
one redshift) using an orthogonal distance regression, see
Boggs et al. (1987, 1989); this technique treats all variables
the same way, i.e. no parameter is a priori thought of as de-
pendent on the others10. The planes are parametrised by

ith plane (FP i)
P 0
i + β1

i P
1
i + β2

i P
2
i = β3

i ,

10 Note, that we do not lump together different models or red-
shifts for the fittings. In part, we used the ODRPACK software
package for the orthogonal distance regression.
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Fig. 4. The fundamental structure in the second parameter space as defined in Table 2. We consider the ΛCDM model at
redshift zero. The first row shows the dependencies among the logarithmised physical parameters for all clusters. In the second
row, we give a visual impression of the fundamental structure. The coordinate axes x1, x2 and x3 are determined in such a way,
that the FP coincides with the x1−x2 plane.

the lines are defined via:

ith line (FL i)
P 1
i = γ1

i P
0
i + γ3

i

P 2
i = γ2

i P
0
i + γ4

i .

We call the best-fitting planes and lines fundamental
planes/fundamental lines, respectively.

We show one of the fundamental structures in Fig. 4 at
redshift z = 0 for the ΛCDM model. To get a clearer repre-
sentation, we fit a second plane to our data under the con-
straint, that it be orthogonal to the fundamental plane, as
Fujita & Takahara (1999) did. A second constraint equa-
tion among the cluster parameters should force the clus-
ters to lie on a line in the global parameter space, this line
should lie (more or less) on the intersection of both planes.
We define a rotated coordinate system {x1, x2, x3} in such
a way that the first (i.e. fundamental) plane coincides with
the x1−x2 plane, and the best-fitting orthogonal plane
lies within the x2−x3 plane. In this coordinate system,
the scatters around both planes are easily discernible as
the x3- and x1-values for the clusters. The morphology of
the structure obviously is more band- than plane-like con-
firming results by Fujita & Takahara (1999), who call the
structure they find in a different parameter space “the
fundamental band”. This is also true for the other pa-
rameter spaces. A visual inspection of the fundamental

Table 3. The best-fitting fundamental planes together with
the 95%-confidence regions for all models and all parameter
spaces considered at redshift zero.

FP i model M200 ∝
�
P 1
i

�β1
i
�
P 2
i

�β2
i

1 CDM M200 ∝ r1.68±0.39
h T 0.71±0.18

em

1 ΛCDM M200 ∝ r1.62±0.24
h T 0.56±0.15

em

1 CHDM M200 ∝ r1.66±0.27
h T 0.69±0.13

em

2 CDM M200 ∝ r1.62±0.32
h L0.31±0.07

X

2 ΛCDM M200 ∝ r1.60±0.17
h L0.29±0.05

X

2 CHDM M200 ∝ r1.78±0.26
h L0.31±0.06

X

3 CDM M200 ∝ r0.61±0.29
h σ1.96±0.26

3 ΛCDM M200 ∝ r1.14±0.38
h σ1.90±0.60

3 CHDM M200 ∝ r0.45±0.43
h σ1.83±0.37

structures shows furthermore that most outliers, which
tend to prolongate the line, wander towards the bulk for
lower redshifts. Note, that in our analysis statistical out-
liers are not removed.

The values of the best-fit parameters are listed in
Table 3 together with their 95%-confidence intervals. Since
we have no measurement errors for the global parameters,
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we can give error bars only assuming the goodness of the
fit. In order to probe whether our fundamental planes may
explain observed fundamental plane relations, we compare
the parameters with simple theoretical scaling laws and
observed parameters. The problem about such compar-
isons, however, is that the definitions of the cluster param-
eters significantly depend on the techniques used to deter-
mine them from observations. Therefore, we have to use
additional assumptions; we constrain ourselves to X-ray
fundamental planes at redshift zero. – From a theoretical
point of view the third fundamental plane is the simplest
one. A virial equilibrium requires that Mvir ∝ Rσ2 for
the whole mass M , the scale R and the velocity disper-
sion σ2 of a cluster being in virial equilibrium. If we simply
identify these parameters with the quantities spanning the
third cluster parameter space, we see that our values for
β2

3 are consistent with the virial equilibrium for all models;
moreover, β1

3 is compatible with the virial prediction for
the ΛCDM model, and marginally consistent within the
CDM model, but inconsistent for the CHDM model. A
physical reason may be that, because of the high value of
Ωm, a virial equilibrium is not yet reached for most clus-
ters within the CHDM model. Perhaps also the plane-fit
is determined by a few clusters not yet in equilibrium; but
certainly larger cluster samples are required in order to
clarify this point definitely.

The first fundamental plane can be compared to the re-
sults by Fujita & Takahara (1999). Using data from Mohr
et al. (1999) they find that the central gas density ρg,0 ∝
R−1.39

1 T 1.29
em , where R1 is the core radius. In order to re-

late our parameters to theirs we estimate ρg,0 by ρg,0 ∝
Mgas/r

3
h ∝ fM/r3

h, where M is the whole mass of the
cluster and f denotes the baryon fraction. Assuming fur-
thermore that R1 ∝ rh and M200 ∝M , we derive from our
first fundamental plane-fit (for the ΛCDM model at red-
shift zero; we assume that the additional scaling relations
used do not introduce additional uncertainties)

fM200 ∝ r1.61±0.24
h T 1.29±0.15. (7)

This result is consistent with theirs provided that the
baryon fraction depends relatively strongly on the tem-
perature: f ∝ T 0.73. For comparison, using the same
observational data as Fujita & Takahara (1999), Mohr
et al. (1999) find fICM ∝ T 0.34±0.22 within r500, see Mohr
et al. (1999) for the exact definitions of the quantities
they use11. For the other cosmological models, the agree-
ment is better. – From a theoretical point of view, one
would expect that for a hydrostatic and a virial equilib-
rium M ∝ RT . For our data the T -dependence is slightly
weaker, whereas R has a stronger influence on the mass.

For the second parameter space, we can use results
by Fritsch (1996) which constitute the base of Fritsch &
Buchert (1999). Assuming that themass-to-light ratio is

11 Note, that Mohr et al. (1999) use 90% confidence regions
instead our 95% confidence levels.

constant for galaxy clusters without scatter, our second
fundamental plane translates into

Lo ∝ r1.60±0.17
h L0.29±0.05

X , (8)

where Lo is the optical luminosity. On the other hand,
putting together the virial mass estimate and the funda-
mental plane from Fritsch (1996), relating Lo, LX, and the
optical half-light-radius ro, we get

Mvir =∝ L0.35
X r1

o. (9)

Especially the dependence on the scale is considerably
stronger in our fundamental plane, but again the discrep-
ancies may be explained by the fact that our estimates of
the cluster mass and scale differ from Fritsch’ ones.

Altogether, our results are in rough agreement with
most of the theoretical expectations and the observed scal-
ing laws. In detail, however, there are some inconsistencies
to be found; but these incompabilities may be explained
either with statistical fluctuations or by questioning some
of the assumptions used in order to relate parameters es-
timated in different ways.

To analyse the morphologies of the fundamental struc-
tures and their redshift evolutions quantitatively, we inves-
tigate the mean scatters around the fundamental planes,

σFP ≡
√

1
N

∑N
i=1 d

2
i , and around the orthogonal planes,

σOP ≡
√

1
N

∑N
i=1 d̃

2
i , where we sum up the quadratic dis-

tances of the N clusters from the fundamental planes, di,
and the orthogonal planes, d̃i. As one can see from Fig. 5,
σFP is decreasing on the whole for each of the first two
global parameter spaces. This, however, is not valid for the
third parameter space if one fits the fundamental structure
using a plane. These details may indicate, that the band
in the third parameter space is better fitted using a line.
This conclusion is confirmed if one takes into account the
scatter around the orthogonal plane, σOP: Fig. 5 shows
that for the third parameter space, the scatter around the
fundamental plane is only about two times larger than
that one around the orthogonal plane.

The evolution of one set of FP parameters is shown in
Fig. 6 for low redshifts. The cosmological models’ confi-
dence intervals, which were estimated again assuming the
goodness of the fit, overlap for small redshifts (z <∼ 0.05)
indicating the consistency of the models regarding the lo-
cation of the second fundamental plane. Apart from the
CDM model the FP-exponents do not show any signifi-
cant evolution for redshifts z <∼ 0.15. Similar results hold
for the first parameter space.

The scatters around the best-fitting lines are decreas-
ing as a function of redshift in most cases (Fig. 7).
Especially, the first and the third parameter space show a
strong redshift evolution, whereas for the second param-
eter space results are less definitive. This complements
our earlier observations, that within the second param-
eter space the fundamental structure is more plane-like,
whereas the third fundamental structure resembles a nar-
row band. To summarise the properties of the fundamen-
tal structures: in the first global parameter space we see a
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Fig. 5. For these plots planes were fitted to the fundamental structures in each parameter space. We show the mean scatters
around these fundamental planes (lower curves) and around the best-fitting orthogonal planes (upper curves) for each parameter
space as a function of redshift. Again, we have: CDM: solid line; CHDM: short dashed line; ΛCDM: long dashed line. For technical
reasons, we consider the CHDM model starting from z ∼ 0.33, only. One sees that the scatter around the fundamental planes
is clearly smaller than for the orthogonal planes.

Fig. 6. The exponents determining the second fundamental plane with their errors at low redshifts, see Eq. (FP i). Since we
do not have measurement-like errors, the 95% confidence regions visible in the plot are estimated assuming the goodness of all
fits. CDM: solid line; CHDM: short dashed line; ΛCDM: long dashed line.

Fig. 7. Now the fundamental structures are modelled using a line. The mean scatters around the best-fitting lines are shown
for each model as function of redshift. Linestyles as in Fig. 5.

band-like structure, the structure in the second space can
be understood as a plane, whereas in the third space the
data are better fitted to a line. Using the corresponding
fittings, the scatters go down, which we interpret in terms
of an equilibrium attracting the clusters.

5.2. Fundamental structures and cluster morphology

So far our results indicate that the galaxy clusters are
attracted by a quasi-equilibrium state mirrored by funda-
mental structures which seem to be more or less universal
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Table 4. Correlations (Kendall’s τ ) between the averaged sub-
structure (as measured by the structure functions C,A1, and S1

for rw = 1.4 and a smoothing length of λ = 0.05 h−1 Mpc) and
the mean quadratic scatter around the fundamental lines. We
consider all models and all parameter spaces. Similar results
can be obtained using the plane-fitting, whenever the scatter
around the plane is decreasing with time. The fact, that almost
no significant correlations occur for the CHDM model, may be
explained in part by noticing that we use fewer pairs of data
points for the correlation analysis in this case.

model FL C A1 S1

λ = 0.05 τ p τ p τ p

CDM 1 0.72 0.007 0.61 0.022 0.78 0.004

CDM 2 0.78 0.004 0.67 0.012 0.83 0.002

CDM 3 0.78 0.004 0.67 0.012 0.83 0.002

CHDM 1 0.62 0.051 0.62 0.051 0.71 0.024

CHDM 2 0.24 0.453 0.24 0.453 0.33 0.293

CHDM 3 0.24 0.453 0.24 0.453 0.33 0.293

ΛCDM 1 0.72 0.007 0.83 0.002 0.83 0.002

ΛCDM 2 0.50 0.061 0.61 0.022 0.61 0.022

ΛCDM 3 0.61 0.022 0.72 0.007 0.72 0.007

for all cosmological models. The evolutions of the mean
scatters show that the clusters are approaching this quasi-
equilibrium state in time in a sort of relaxation process. In
order to quantify how far individual clusters are away from
this equilibrium state, one can estimate their distances
from the fundamental plane within each of the parameter
spaces. The concept of a distance within the parameter
space thus allows us to measure the inner dynamical state
of a cluster.

The physical nature of this quasi-equilibrium state
can be confirmed if one can show that different global
cluster characteristics are accompanying this evolution.
An excellent candidate is cluster substructure; indeed,
the cosmology-morphology connection is based on the as-
sumption that the age of a cluster and therefore its dy-
namical state is reflected by cluster substructure. We have
already seen that on average, both the cluster substruc-
ture and the distances from the fundamental planes are
decreasing in time.

Therefore, we ask in a first step whether the sample-
averaged substructure and the sample-averaged scatter
around the fundamental structures are correlated during
their time-evolution. A basic test relies on Kendall’s τ ,
a non-parametrical correlation coefficient Kendall (1938;
Fritsch & Buchert1999). In general, the amount of τ re-
flects the strength of the correlations between two quan-
tities within a given data set, while the sign of τ speci-
fies whether positive or negative correlations hold among
the data points. Only values of τ where p(τ) (the prob-
ability of the nullhypothesis that no correlations among
the data points exist) is smaller than 0.05 evince a sta-
tistically significant correlation. The results shown in
Table 4 indicate that, for the case of the line-fitting, strong

Fig. 8. We apply a Kendall’s test to relate the substructure
and the dynamics of individual clusters. The substructure is
measured using the clumpiness (estimated after having em-
ployed a smoothing length of 0.05 h−1 Mpc), the dynamical
state of the cluster is quantified with the distance from the
first fundamental line. We show the results, the Kendall corre-
lation coefficient, as a function of redshift for all models. Note,
that for significant results, we need a τ larger than about 0.2
(slightly depending on the number of clusters which is different
for the different models).

correlations exist for the CDM and for the ΛCDM model.
For the CHDM model we have fewer redshifts, a fact, that
in part may explain the less meaningful results.

To become more specific, we ask in a second step
whether the distance from the fundamental plane and the
cluster morphology, quantified by the structure functions,
are connected for individual clusters. Tentatively we car-
ried out Kendall tests for each cluster sample relating the
substructure parameters and the distances from the fun-
damental structures. Since we considered several structure
functions at different values of the smoothing scale, there
is quite a lot of freedom. However, the results, as shown,
for example, in Fig. 8, do not establish a significant corre-
lation between the substructure and the distance from the
fundamental plane for individual clusters; there is no con-
nection persisting in time and throughout all of the cos-
mological models. More specifically, there are not many
significant correlations to be found at all; and some of
them even turn out to be anticorrelations meaning that
substructure-poor clusters are farer away from the funda-
mental plane than the substructure-rich ones. But there
are also a number of positive correlations between sub-
structure and distance from an equilibrium to be discov-
ered for other models at certain redshifts.

The lack of a statistical significant relation between
substructure and dynamics for individual clusters may
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have several reasons; in particular, a physical connection
may be obscured on statistical grounds. For example, if
the fit of the fundamental plane is determined by a few
clusters far from equilibrium, then the fitted fundamental
structure is distorted with respect to the real one and the
distances from the fundamental plane become distorted as
well. This can be clarified in future analyses with larger
cluster samples.

It is, however, worth noticing that anticorrelations fre-
quently occur in cases where the mean scatter around our
fits of the fundamental structure fails to decrease during
the dynamical evolution. In other words, careful and ap-
propriate fittings which result in a decreasing scatter with
time reduce in part the indefinitive results in favour of a
positive connection between substructure and the distance
from the fundamental plane.

The results on the fundamental structures can be sum-
marised as follows:

1. There is clear evidence for the existence of a fundamen-
tal band-like structure in all sorts of parameter spaces
investigated here, even for moderate redshifts (<∼0.4).
This band can be fitted either using a plane or a line;

2. Fitting the fundamental structures appropriately, one
can observe that in most cases the scatter around these
structures decreases with time on the whole;

3. Examining the evolution of the scatter around the fun-
damental structures and their morphologies one can
specify, that in the first and third parameter space a
line can be seen, whereas the data within the second
space are better fitted by a plane;

4. There are no large differences at redshift zero among
the fundamental planes observed in different cosmo-
logical models;

5. The scatters around the fundamental structures are
comparable for all cosmological background models in-
vestigated here12;

6. There are some positive correlations between the struc-
ture functions and the distances from the fundamen-
tal structures (if appropriately fitted) for the averaged
cluster evolution; for individual clusters, however, the
results are not conclusive.

6. Conclusions

The shape of a body frequently is its first property to be
recognised. However, when the body is investigated more
closely, more than a qualitative description of its mor-
phology is required. One wants to know, to what extent
its appearance reflects inner properties, and one wants to

12 This can be seen from Figs. 5 and 7. A quantitative analysis
based on the KS test shows that indeed the cosmological mod-
els are in most cases compatible with each other regarding the
distances from the fundamental lines/planes for low redshifts.
Thus, it is not possible to discriminate between the different
background models merely by means of the scatter around the
fundamental structures.

compare the shape of the body to predictions of analyti-
cal models. For both purposes one needs robust descrip-
tors of the body’s morphology. This is also true for galaxy
clusters. In this paper we investigated both the morphol-
ogy and the inner dynamical state of galaxy clusters us-
ing large samples of simulated galaxy clusters. In order to
measure the cluster substructure we employed structure
functions based on the Minkowski valuations; the inner
cluster state was quantified by the distance from a funda-
mental band-like structure observed in a parameter space
of global cluster descriptors. The intention of our paper
was twofold: we first tested a new method to measure the
substructure of galaxy clusters. On the other hand, we
investigated how far the cluster inner dynamical state is
mirrored by the morphology and how different cosmologi-
cal background models are distinguished by means of the
cluster substructure.

Regarding the morphometry of galaxy clusters, i.e. the
quantitative description of their size, shape, connectivity,
and symmetry, the Minkowski functionals together with
the Quermaß vectors allow for a discriminative and com-
plete characterisation. They are based on a number of co-
variance properties and thus rest on a solid mathematical
basis. The structure functions constructed from the MVs
feature different aspects of substructure successfully.

Employing these methods we showed that the sub-
structure of X-ray clusters distinguishes between cosmo-
logical models in an effective way. As expected theoret-
ically, the substructure on the whole is minimal for the
ΛCDM model and higher for the high-Ωm models con-
sidered here. The power spectrum does not seem to have
a systematic influence. We mainly focused on simulated
X-ray images; but also the DM substructure can distin-
guish between the cosmological models.

Another important issue is the connection between
substructure and fundamental plane relations. This con-
nection has not been investigated so far using numerical
N -body simulations. In general, the evolution of funda-
mental plane relations within N -body simulations has not
yet been scrutinised extensively. We could show that there
are stable fundamental band-like structures within most
cosmological models. Moreover, we found a positive cor-
relation between the averaged distance from this struc-
ture (if it is fitted appropriately) and the sample-averaged
structure functions during time for two of our cosmological
models. For individual clusters, however, we failed to pro-
duce definitive results. Further investigations using larger
simulations are in order to tackle this point. However, al-
together there are weak indications that both our struc-
ture functions feature those aspects of substructure that
reflect the inner cluster state and that the fundamental
structures are the imprint of a physical equilibrium.

These results raise a couple of new questions: how can
we explain the fundamental structures? What is the phys-
ical origin of the degenerated fundamental line? Are the
fundamental bands dependent on the environment as sug-
gested by Miller et al. (1999)? What is the precise time
evolution of fundamental structures?
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A number of tasks still remain to be done: in this
paper, the FP-parameters were defined using the three-
dimensional clusters. How significant are all the results
found here, when one moves to more observation-like de-
fined quantities? In our results one thing is paradoxical:
on the one hand, the mean substructure discriminates well
between the models, whereas on the other hand the mean
scatters around the fundamental bands are comparable for
all sort of models. We conclude that the morphology is re-
ally necessary to establish a connection between clusters
and the global cosmological parameters.
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