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Abstract. Numerical simulations of light curves of variable DA white dwarfs (ZZ Ceti stars) predict flux amplitudes
with surface distributions different from the spherical harmonics of the pulsation mode in deeper layers. In contrast
to the results of the perturbation analysis by Goldreich and Wu, this is also true for the fundamental period of
the flux variation. As a consequence, normalized amplitude spectra depend not only on the mode number l but
also on pulsation amplitude and inclination. Another new result is that with increasing amplitude of the pressure
variation below the convection zone, the flux variation at the surface goes through a maximum and then decreases
again.
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1. Introduction

The ZZ Ceti stars are the coolest class of pulsating white
dwarfs. They are multi-periodic g-mode pulsators with pe-
riods in the range of 100 s to 1000 s. In contrast to the
PG 1159 objects and the variable DB only a few modes
are observed in each individual ZZ Ceti star. The num-
ber of observed pulsation periods, the amplitudes and the
shape of the light curves of these stars change systemati-
cally within the instability strip (see e.g. Clemens 1993).
At the hot (blue) edge, small amplitude pulsations are
observed with sinusoidal light curves. The cooler ZZ Ceti
stars show more modes with large amplitudes of more than
10% with overtones and additional frequencies, formed by
sums and differences of the fundamental frequencies of the
modes.

The small number of unstable modes forms an obsta-
cle to standard mode identification techniques (identifying
the “quantum numbers” l and m of the spherical harmon-
ics of a mode), which rely mostly on periods and period
spacings of unstable frequencies in the power spectrum. In
recent years, time–resolved spectroscopy of white dwarfs
has become possible and was used to identify the spherical
harmonics of the modes. This mode identification tech-
nique uses the wavelength dependence of normalized pul-
sation amplitudes and takes advantage of the wavelength
dependence of the limb darkening and different cancella-
tion of the flux variation for different spherical harmonics
(Robinson et al. 1982; Brassard et al. 1995; Robinson et al.
1995; Kepler et al. 2000; Clemens & Kerkwijk 2000). This
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diagnostic technique depends on the assumption that the
flux amplitude on the visible surface varies with the spher-
ical harmonic (l,m) of the mode.

This assumption – which we will call “linear” – is sub-
ject to criticism, at least for larger amplitudes. For large
amplitudes, non–sinusoidal light curves are observed, in
contrast to the sinusoidal light curves for small ampli-
tudes. Because the ZZ Ceti stars are non-radial pulsators,
the amplitude varies over the surface of the star and one
would expect a variation of the shape of the light curves
over the surface for large amplitudes as well. This is in
contradiction to the assumption of a flux variation with
spherical harmonics. For a quantitative description of the
integrated light curve and spectra we will need a theo-
retical understanding of the reaction of the local surface
flux to an imposed pressure variation at deeper layers.
This theory should demonstrate how the surface variation
becomes increasingly non–sinusoidal with increasing am-
plitude of the pressure variation.

Such a description was provided by Brickhill (1983),
who proposed that the thin convection zone below the
surface of the ZZ Ceti stars has an important effect on the
light curves. Brickhill showed, in a series of papers, that
numerical simulations of the light curves can qualitatively
reproduce the observed flux variations. This result was
confirmed by Wu (1998) and Wu (2000).

Goldreich & Wu (1999, 1999a) and Wu & Goldreich
(1998a) studied the driving mechanism of the ZZ Ceti
stars in a linear perturbation analysis. Their work lead
to impressive progress in the understanding of the driving
of the pulsation modes, but it their linear analysis they
consider only the entropy change in a convection zone of
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constant depth. Wu (1998, 2000) extended this work to
take into account the depth changes, but used only static
models of convection zone.

The numerical integrations we have performed for this
paper show that for larger amplitudes the depth varies
significantly during one cycle. At each time step during the
pulsation the structure remains different from any static
structure, leading to modifications of the nonlinear effects,
which appear already in the perturbation analysis using
static structures, as described in this paper.

We extend Brickhill’s work and show that the con-
vection zone strongly influences the spatial distribution
of surface amplitudes, which for larger amplitudes cannot
anymore be described by spherical harmonics. This can-
not be neglected in the technique of mode identification
by time–resolved spectroscopy. In the next section we de-
scribe the model used for our numerical calculations. First
we will introduce the relatively simple system of ordinary
differential equations to solve the time–dependent struc-
ture of the envelope of ZZ Ceti stars, obtained by allowing
only a restricted time dependence of the basic equations.
To examine the validity of this restriction for large am-
plitude pulsation, we introduce the full time–dependent
equations in the following subsection. The boundary con-
ditions have a large influence on the results of the numeri-
cal simulations; the following subsection is devoted to this
topic. Section 3 describes the results of a light curve sim-
ulation for a plane–parallel column with a fixed pulsation
amplitude. In Sect. 4 we consider that the pulsation ampli-
tude varies over the surface for non-radial pulsators like
the ZZ Ceti stars, and describe the surface distribution
of the flux for different maximum amplitudes and spher-
ical harmonics. The technique used to calculate the total
flux together with the expected consequences for the time–
dependent spectroscopy are discussed in Sect. 5 Finally we
give our main conclusion in Sect. 6.

2. The numerical model

Within her analysis, Wu (1998, 2000) calculates the local
response of the surface flux to a sinusoidal variation of
pressure and flux in a layer at the bottom of the convection
zone. Due to the change in extent and structure of the
convection zone its reaction to the perturbation of the
input flux is nonlinear, leading to the appearance of higher
harmonics in the surface flux (Wu 2000).

The main result is that the amplitude of the fun-
damental period depends linearly and that of the first
overtone quadratically on the amplitude below the con-
vection zone. The phase delays between surface flux and
pressure variation are constant, independent of amplitude.
This important result guarantees that the spatial distri-
bution over the stellar surface for the fundamental period
is still given by the same spherical harmonic, which de-
scribes the variation in the deeper layers. This justifies the
usual assumptions made in the analysis of time–dependent
spectroscopy.

The starting point of our own study is the numerical
model of Brickhill. In this model the convective layer is
considered as a plane–parallel column. The lower bound-
ary of this column lies below the surface convection zone,
the upper boundary is directly below the photosphere. The
sinusoidal relative pressure variation is assumed to be con-
stant through the whole column, an assumption justified
in the work by Brickhill and Goldreich and Wu.

In the simulation we calculate the transfer of energy
and the time–dependent temperature structure numer-
ically in a way similar to Brickhill’s work. Some im-
provements over his work are state-of-the-art equation of
state from Saumon et al. (1995) and OPAL opacity data
(Iglesias & Rogers 1996), and our own model atmosphere
grids, which are described in Finley et al. (1997).

In this paper we want to show the principal effects for
the analysis of time–resolved spectroscopy. Since we are
not aiming at a detailed comparison with observations,
it is sufficient to investigate only one equilibrium model
with one effective temperature and one pulsation period.
We take a stellar model with Teff = 11 350 K and log g = 8
and a pulsation period of 100 s. We use only one parameter
for the mixing length theory (ML2/α = 0.6); the thermal
relaxation time scale is 4.5 s. With this choice our model
is representative for the conditions near the blue edge of
the instability strip. All our calculations and results of this
study are based on this set of parameters.

2.1. The basic equations

The main aim of the model calculation is to determine the
temperature structure as a function of time. The tempe-
rature disturbance δT for a static model can be calculated
from

δT =
δQ

Cp∆M
+∇adT

δP

P
· (1)

Equation (1) is equivalent to the first law of thermody-
namics (e.g. Cox 1980, p. 37) and can be found in Brickhill
(1983) as well. The first term on the right describes the
non–adiabatic heating by the additional heat energy δQ of
a mass ∆M with the heat capacity Cp. The second term is
the adiabatic contribution to the temperature change due
to the relative pressure variation δP

P in an environment
with an adiabatic temperature gradient ∇ad.

To calculate the heat energy δQ we consider a finite
volume element with the cross section A and a height ∆z.
Introducing a discretization and finite volume elements
at this point, we can avoid the use of partial differential
equations. In a plane–parallel symmetry, the flux has only
a vertical component. If ∆F is the difference between the
outgoing and the incoming flux for a mass element, the
heat energy accumulated in a time interval ∆t is given by

δQ =
∫ ∆t

0

dt A∆F (2)

or written in differential form
dδQ
dt

= A∆F. (3)
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To calculate the mass ∆M of the volume element we fol-
low the procedure of Brickhill. We take the pressure of
the non–pulsating star in hydrostatic equilibrium to define
the vertical depth scale. Following Brickhill we introduce
ω̃ ≡ lnP as the independent variable of the problem. The
mass element for a fixed pressure difference ∆ω̃ can be
written as

∆M = A

∫ z2

z1

dz %(t)

= A

∫ ω̃1

ω̃1+∆ω̃

dω̃ %(t)
dz
dω̃

= A

∫ ω̃1+∆ω̃

ω̃1

dω̃
P (t)
g
· (4)

As Brickhill assumed, and was confirmed by Goldreich &
Wu (1999), the relative pressure variation can be taken as
constant through the whole column. We further assume
a constant surface gravity g throughout the column. This
simplifies the expression for the mass element:

∆M = A
exp( δPP (t))

g
exp(ω̃)

∫ ∆ω̃

0

dω̃′ exp(ω̃′)

= A
P (t)
g

f̂(∆ω̃) (5)

with

f̂(x) ≡ exp(x)− 1.

In a first order approach we can combine Eqs. (1), (3)
and (4), by taking the derivative with respect to the time
of (1). In this first order approach we are only concerned
with the time–dependency of δT , δQ and δP

P . We get

dT
dt

=
∆F g

CpP f̂(∆ω̃)
+∇adT

d
dt
δP

P
· (6)

For all the mass elements of the vertical column, Eq. (6)
defines a system of ordinary differential equations (ODE)
for the temperature structure. The fluxes describe the cou-
pling of the equations at each grid-point of the column.
In our approximation we calculate the flux locally from
the actual temperatures and temperature gradients. It is
given by

F = Fr + Fc, (7)

where the radiative flux Fr can be calculated with the dif-
fusion approximation and the convective flux Fc by means
of the mixing length theory. We use a time–independent
formulation of the mixing length theory and assume an
instantaneous adjustment of the total flux to the temper-
ature and pressure structure of the column. To check the
validity of this assumption we have also used the time–
dependent Kuhfuss model for convection (Kuhfuss 1986;
Wuchterl & Feuchtinger 1998) and found no differences
between the time–dependent and the time–independent
model calculations. This result holds strictly, if the kinetic
energy of the convection does not contribute to the ther-
mal energy, but the differences are also small if we take
such a coupling into account.

The rapid variation of the flux with the temperature
leads to short relaxation time scales near the upper bound-
ary of the column. This leads to a stiff behavior of the
ODE. Consequently we use a Gear solver (Gear 1971) to
integrate Eq. (6).

2.2. The full time–dependent equations

The differential formulation of (1) leads in principle to
reliable solutions for large perturbations as well. But to
obtain Eq. (6) we have ignored all time–dependencies ex-
cept for δT , δQ and δP

P . For large amplitudes ( δPP > 5%),
this cannot be justified any longer, since temperature and
specific heat capacity can change by large amounts. In a
first step to correct for this we can replace all quantities in
Eq. (6) by their current values instead of those of the equi-
librium model. Since this may not be sufficient for short
pulsation periods (∼100 s), we have modified Eq. (6) and
taken into account all terms produced by the derivative
of (1) with respect to time

[1 + x1 − x2]
dT
dt

=
∆F g

CpP f̂(∆ω̃)
+∇adT

d
dt
δP

P
−x3 +x4.(8)

In the following all thermodynamic quantities are func-
tions of T and P , and a partial derivative with respect to
T means that P is to be kept constant and vice versa. The
correction terms x1 and x3 due to the non–adiabatic term
of Eq. (1) are

x1 =
δQ

C2
p∆M

∂Cp

∂T

x3 =
δQ

C2
p∆M

∂Cp

∂P

∂P

∂t
·

The correction terms x2 and x4 are produced by the
derivative of the adiabatic term of (1)

x2 =
(
∂∇ad

∂T
T +∇ad

)
δP

P

x4 =
∂∇ad

∂P
T
δP

P

∂P

∂t
·

The derivative of the mass element with respect
to the time is calculated again under the assumption, that
the relative pressure perturbation is constant through the
whole column. Then this variation is inversely related to
the change of the horizontal area

δA

A
= −δP

P
·

This leads to

d∆M
dt

=
(

dA
dt
P (t) + A(t)

dP
dt

)
f̂(∆ω̃)
g

= 0. (9)

In Eq. (8) appear both the time–derivative of δQ and δQ
itself. This changes the structure of the equations from or-
dinary differential equations to a set of integro–differential
equations. We solve this system by a splitting procedure.
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In the inner step, we solve the differential equations for
a time step short compared to the pulsation period with
constant δQ. After this time step, δQ is updated. For time
steps of about 0.25% of the period, the achieved accuracy
is high enough, since the integral only appears in higher
order terms.

The contributions of x1 and x2 are important for
large pulsation amplitudes, caused by the large and rapid
changing of the temperature, whereas all terms including a
derivative of ∇ad are unimportant. Table 1 compares the
amplitudes of the fundamental and the first overtone of
the photospheric flux variation as a result of (6) with (8)
for our model with a period of 100 s. For (6) we take the
current values of all quantities, instead of the values of the
equilibrium model.

Table 1. Fourier amplitudes for the photospheric flux vari-
ation. Columns 2 and 4 display the amplitude of the funda-
mental for Eq. (6) (ODE) and Eq. (8) (IDE), respectively.
Columns 3 and 5 show the amplitudes of the first overtone.
All quantities are functions of the pressure amplitude δP

P
·

ODE IDE
δP
P A1[%] A2[%] A1[%] A2[%]

0.02 1.71 0.24 1.71 0.25
0.04 3.64 1.17 3.65 1.23
0.06 5.14 2.01 5.18 2.13
0.08 6.17 2.61 6.29 2.83
0.10 6.78 2.95 7.04 3.32
0.12 6.97 2.97 7.45 3.56
0.14 6.74 2.67 7.54 3.54
0.16 6.09 2.01 7.31 3.25
0.18 5.17 1.17 6.78 2.68

The differences for large pressure amplitudes are sig-
nificant in the solutions of (6) and (8), but the qualita-
tive behavior is the same in both cases. Since the numer-
ical effort is not very much larger for solving the IDE,
this method will be implemented in future versions of our
code. The ODE solution (6) is adequate for a qualitative
discussion and all results given in this paper are based
on (6) with current values for all quantities. One should
remember, however, that the results for large amplitudes
– though qualitatively correct – may be affected by this
approximation.

2.3. Boundary conditions

The basic system of ODE (6) looks like an initial value
problem, but this is only partially correct. To obtain
Eq. (2) we have introduced a discretization of the col-
umn, to replace the spatial derivatives of the flux with
finite differences. The mathematical structure of a partial
differential equation survives in the coupling of the ODEs
and the necessity to define boundary conditions for the
flux.

For the lower boundary we assume the adiabatic ap-
proximation. The matter in the region below the convec-
tion zone is well approximated as a completely ionized
hydrogen plasma. Under this assumption the flux pertur-
bation is given by (see Goldreich & Wu 1999)

δF

F
=

3− 3κ% − 2κT

5
δP

P
, (10)

where κ% and κT are the logarithmic derivatives of the
opacity with respect to the density and temperature. This
adiabatic assumption is the weakest point of the approx-
imations in the numerical model. In order to test this as-
sumption and also to find the optimum location of the
lower boundary we have made a numerical experiment.

Fig. 1. The variation of the photospheric flux (solid line) and
the flux variation at the lower boundary (dashed line) are plot-
ted for a 1% (upper panel) and a 5% pressure amplitude (lower
panel).

We assume a column with a lower boundary much
deeper than the bottom of the convection zone with a con-
stant pressure amplitude in the whole column. The depth
of the lower boundary is limited by the growing computing
costs, because a pulsation simulation has to be done for at
least one thermal time scale of the whole column to reach
a stationary situation. For our model we choose a ther-
mal time scale of 1500 s and a value of ω̃ = 22 to fix the
lower boundary for this experiment. At this lower bound-
ary we apply a sinusoidal flux perturbation and study the
resulting flux at a point clearly below the maximum ex-
tent of the convection zone, but far away from the lower
boundary. At this point the flux is no longer sinusoidal
but shows a fundamental with amplitude A1 and a first
overtone with amplitude A2. The phases are shifted rela-
tive to the bottom flux by φ1 and φ2 respectively, where a
positive phase means that the variation is lagging behind
the perturbation. One should note that these effects would
be absent in a completely radiative star; they are caused
by the delayed reaction of the convection zone, which de-
termines the outer boundary for the envelope structure.

Table 2 shows the results at the point with ω̃ = 19.45.
The first overtone at this point remains at least one or-
der of magnitude smaller than the fundamental amplitude
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and the phase shift between pressure and flux variation re-
mains small. We follow Brickhill in our conclusion that the
adiabatic flux variation at the lower boundary is a good
approximation if the propagation zone of the g-modes is
far away from the convective layer. This is true for short
period pulsations as considered in our model, which rep-
resents the “blue edge” of the instability strip. For our
pulsation simulations we then fixed our lower boundary
at ω̃ = 20.

Table 2. Influence of non–adiabatic terms at the lower bound-
ary: results of the experiment described in the text. The 2nd
column displays the amplitude of the sinusoidal flux variation
at the lower boundary. The 3rd and 4th column is the ampli-
tude and phase of the fundamental at the point ω̃ = 19.45,
which is always below the convection zone. The first overtones
are shown in Cols. 5 and 6.

δP
P

(
δF
F

)
lb

[%] A1[%] φ1[o] A2[%] φ2[o]

0.02 4.40 4.72 2.67 0.05 −98.43
0.04 8.80 9.43 2.67 0.19 −97.35
0.06 13.20 14.09 2.84 0.40 −97.80
0.08 17.60 18.62 3.12 0.69 −97.80
0.10 22.00 23.05 3.43 1.08 −97.52
0.12 26.40 27.39 3.75 1.56 −97.35
0.14 30.80 31.59 4.09 2.10 −97.92
0.16 35.20 35.61 4.47 2.72 −99.01
0.18 39.60 39.45 4.88 3.44 −100.32

To find an upper boundary condition we make the as-
sumption, that the photosphere reaches the static struc-
ture for each time step instantaneously. As discussed e.g.
by Brickhill (1983) this approximation is valid for small
thermal time scales compared with the pulsation period.
We choose the upper boundary at the pressure point with
the optical depth ≈10, where this condition is clearly ful-
filled. The advantage to take the optical depth clearly
greater than 1 at the upper boundary of the column is,
that the time–dependent calculations can be done with the
diffusion approximation for the radiative flux. The deter-
mination of the photospheric structure requires a detailed
radiative transfer calculation, but without consideration
of terms with time–derivatives. To connect these two dif-
ferent calculations we assume, that the combination of the
actual flux, pressure and temperature is the same at the
upper boundary of the column as in one specific static pho-
tospheric model. To find the flux we use a grid of static
models and find the known combination of pressure and
temperature in this grid for each time step separately and
interpolate the flux from these models. This procedure
avoids a further linearization at the upper boundary, but
is in principle equivalent to Brickhill’s method.

3. Numerical results for a column

In this section we study the reaction of the convection zone
and the shape and amplitude of the surface flux variation
for a column on the stellar surface.

Fig. 2. Shape of the flux variation for different pressure am-
plitudes. The bottom line is the light curve for 1% amplitude,
the increment between curves is 1%. The light curve at the top
of the panel is for 20% pressure amplitude.

For small amplitude pulsations with 1% pressure vari-
ation (see upper panel in Fig. 1), the photospheric flux
(solid line) is shifted in phase relative to the flux of the
adiabatic layers (dashed line) and the amplitude is re-
duced. As shown by Brickhill (1983), the phase shift and
the reduced amplitude is caused by the delay in the heat
transfer due to the necessary adjustment of the convective
layers to a change in the input flux. If the flux is increased,
the depth of the convective layer is shrinking as required
by a static envelope solution corresponding to a higher ef-
fective temperature. A large amount of heat is necessary to
change convective into radiative layers and to increase the
heat content of the remaining convection zone, which has
to be supplied by the input flux. Consequently, the pho-
tospheric flux follows the input flux with a delay of the
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Fig. 3. Amplitudes of the Fourier coefficients relative to the
mean flux for a local column. The numerical results are labeled
with the name of the harmonic. The curves marked with p.a.
indicate the linear and quadratic relations predicted by the
perturbation analysis.
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Fig. 4. Phases of the fundamental and overtones relative to the
pressure variation in a local column for the numerical results.
The linear perturbation analysis predicts constant phases with
values which depend on the equilibrium model.

order of the thermal time scale of the convective layer. If
the input flux varies periodically with a period compara-
ble to the thermal time scale, this delay results in a phase
shift and an amplitude reduction.

Figure 2 summarizes this variation of the light curves
with changing pressure amplitudes.

For small amplitudes the variation of the surface flux
remains sinusoidal and the amplitude increases linearly
with the pressure amplitude as predicted by the pertur-
bation analysis.

For larger amplitudes, e.g. 5% (lower panel Fig. 1) the
extent of the the convective zone varies significantly dur-
ing the pulsation cycle, and the stratification may even
become completely radiative shortly after maximum com-
pression. At that instant the photospheric flux follows di-
rectly the adiabatic flux variation, causing the steep in-
crease and sharp maxima in the light curves.

Increasing the pressure amplitudes even further (20%),
the surface flux variation becomes sinusoidal again, with

Fig. 5. Time–averaged flux relative to the flux below the con-
vection zone.

small amplitudes. In this case, a large fraction of the heat
flux is transformed into mechanical energy, and the re-
maining average flux corresponds to a model with lower
(time–averaged) effective temperature and thicker convec-
tion zone. The thermal time constant of this convection
zone becomes large compared to the pulsation period, re-
sulting in a strong reduction of the flux amplitude.

We emphasize that this conversion of heat to me-
chanical energy in the column (which remains qualita-
tively the same with the higher numerical accuracy of the
IDE method) does not directly tell us anything about the
global excitation or damping of the mode. Our calcula-
tion is based on energy arguments in an open system: the
enforced variations of the pressure and column cross sec-
tion carry away any difference of incoming and outgoing
heat flux. In order to really study the excitation of the
mode, one would need to calculate the behavior of the
mode throughout the whole star. It is quite possible that
the increase of the mechanical energy in the outer enve-
lope is more than balanced by a damping in the interior;
it is also possible that the energy goes into the excitation
of other modes. This problem will be studied further in
future simulations, which include the study of the P dV
term in Eq. (1).

The sharp maxima in the light curves imply the ap-
pearance of higher harmonics in the Fourier decomposi-
tion. Figure 3 demonstrates, how the relative amplitudes
of fundamental, first, and second overtone increase with
increasing pressure amplitude. For low amplitudes, the re-
sults confirm the predictions of the perturbation analy-
sis (linear and quadratic dependence for fundamental and
first overtone); for amplitudes larger than 5%, however,
strong deviations become apparent.

The sign and even the magnitude of the phase shifts in
Fig. 4 approximately agree with the predictions of the per-
turbation analysis: the fundamental for the flux is lagging
behind the pressure, whereas the in the first harmonic it
is leading. However, quite unexpectedly from the predic-
tions of Goldreich and Wu, for very small amplitudes the
phases do not become constant. The shift demonstrates
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the change of the relative contributions from the com-
pression in the convection zone, which is strictly in phase,
and the flux variation below the convection zone, which
is phase shifted during the propagation through the con-
vective layer. While at very low amplitudes the numerical
result may be questionable, we are confident that this is
not the case for pressure amplitudes larger than about
1%. This result needs further study, and we will attempt
in a future paper to reconcile the results of numerical and
perturbational analysis.

Another difference to the perturbation analysis of
Goldreich and Wu is the dependence of the mean local
flux on the pressure amplitude (see Fig. 5). The flux from
below the convection zone is reduced by a fraction of en-
ergy that is converted into mechanical energy to drive the
pulsation mode. This fraction grows quadratically with
the pressure amplitude. Consequently the mean flux is re-
duced very efficiently for large amplitudes.

4. Surface distribution

In the preceding sections we have discussed the local reac-
tion of the photospheric flux to an assumed fixed pressure
amplitude. In this section we consider the whole surface of
the star, assuming that the spatial structure of the pres-
sure perturbation as well as the flux perturbation below
the convection zone is described by a spherical harmonic
of mode numbers l and m.

For small amplitudes – because of the linear depen-
dence of surface amplitudes on pressure amplitudes – the
distribution of the surface flux amplitude follows directly
the pressure and is therefore described by the same spheri-
cal harmonic. But this is only true if one ignores the small
phase changes of the flux variation. Due to this phase shift
the maximum flux amplitude is reached at a later time for
smaller amplitudes. This effect leads to a deviation of the
photospheric flux distribution from the spherical harmonic
of the mode, but the flux amplitude at the surface is still
a monotonous function of the pressure amplitude. This
changes with increasing amplitude: because of the non–
monotonous local relation the maximum flux amplitude
at the surface does not coincide with the maximum of the
pressure amplitude and e.g. for m = 0 modes the maxi-
mum flux amplitude is not reached at the poles. Since also
the phases change with amplitude, different latitudes on
the surface reach the maximum flux at different times.

Figures 6 to 8 show the surface distribution for l =
1, 2,m = 0 modes as three-dimensional plot with gray-
level indicating the effective temperature, and in graphical
form the dependence on polar angle µ = cosϑ. Shown are
three different cases for small, medium, and large pressure
amplitudes.

For l = 2 modes the change due to the nonlinear rela-
tion between pressure amplitude and surface flux ampli-
tude may be quite dramatic: whereas for small amplitudes
the maximum amplitudes are at the poles, with a smaller
relative maximum at the equator, the situation can be
completely reversed at large amplitudes (see Fig. 8).
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Fig. 6. Surface distribution of the effective temperature near
the maximum of the integrated flux. The gray-level of the plot
(top, for an l = 2 mode) is normalized to the maximum Teff

(white) and minimum Teff (black) on the surface. The middle
panel shows in graphical form the temperature distribution
with angle µ = cosϑ for l = 1 at three different times, the
bottom panel the same but for l = 2. The maximum pressure
amplitude is 2% (small amplitude).

5. Flux integration and time–resolved spectra

From these results it follows that the surface distribution
of the flux variation in general has a much more compli-
cated form than is assumed traditionally (meaning spher-
ical harmonics describing all variations on the stellar sur-
face). In this section we want to answer two questions:
First, we want to find an optimal strategy to calculate the
wavelength dependent amplitude spectra, and second, we
want to discuss the major effects on time–resolved spec-
tra one has to expect, if the linear assumption is no longer
appropriate.
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Fig. 7. Similar to Fig. 6, but for a maximum pressure ampli-
tude of 5%.

The general problem is to find the time–dependent flux
Fλ = Fλ(Ω, t), where Ω is the direction to the observer.
To integrate the flux we need the specific intensity at each
point of the surface at each time in the direction Ω. In gen-
eral, the specific intensity is a function of wavelength λ,
the spatial point r, the direction Ω and the time. We want
to restrict this to a simpler situation, where the intensity
can be calculated from a plane–parallel model atmosphere
at each point. Furthermore we assume, that the surface
structure is equivalent to a static model atmosphere down
to optical depths larger than 1 for each time step. In this
case the specific intensity is only a function of the wave-
length, the local flux F and the cosine between Ω and the
vector normal to the surface n

Iλ = Iλ(F, µ),

with µ = n · Ω. In this approximation the dependence
of the specific intensity on the surface element specified
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Fig. 8. Similar to Fig. 6, but for a maximum pressure ampli-
tude of 20%.

by the angles θ and φ and the time is not explicit but
arises from the the dependence of the local flux on these
quantities.

The surface coordinates (θ, φ) can be taken as iden-
tical to the coordinates in the spherical harmonic of the
pulsation mode. For the integrated flux it is convenient
to introduce a coordinate system with the axis oriented
towards the observer. The system (ϑ, ϕ) is defined by

ϑ = 0 for µ = 1.

In this case the integrated flux can be written as

Fλ(Ω, t) =
∫ 2π

0

dϕ
∫ 1

0

d cosϑ cosϑ Iλ(F (ϑ, ϕ, t), µ). (11)
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Assuming that the flux Fλ is strictly a periodic function
with the circular frequency ω we can expand the flux in a
Fourier series

Fλ(Ω, t) =
A0

2
+
∞∑
n=1

[An cosnωt+Bn sinnωt]

with

An =
ω

π

∫ to+2π/ω

t0

dtFλ(Ω, t) cosnωt (12)

and

Bn =
ω

π

∫ to+2π/ω

t0

dtFλ(Ω, t) sinnωt. (13)

A0/2 is the mean surface-integrated flux. The amplitude
for each harmonic n is defined by

δF
F n

≡ 2
√
A2
n +B2

n

A0
(14)

and the normalized amplitude spectrum by

Qn ≡
δF
F n

(λ)
δF
F n

(λ0)
=
A0(λ0)
A0(λ)

√
A2
n(λ) +B2

n(λ)√
A2
n(λ0) +B2

n(λ0)
· (15)

Here λ0 is an arbitrary reference wavelength, often taken
in the visual at 5500 Å corresponding to the V magnitude.

5.1. Relation of Iλ to the local flux F

For the evaluation of Eq. (11) it is necessary to connect
the specific intensity with the total flux of a local col-
umn. Using an expansion to first order we assume for this
relation

Iλ = Iλ(F0, µ)− ∂Iλ
∂F

∣∣∣∣
F0

(µ)F0 +
∂Iλ
∂F

∣∣∣∣
F0

(µ)F (t). (16)

Expanding the local flux in a Fourier series in the same
manner as for the surface integrated flux

F (t) =
a0

2
+
∞∑
n=1

[an cosnωt+ bn sinnωt]

the amplitude for the harmonic n is

δF

F n
≡ 2

√
a2
n + b2n
a0

· (17)

Inserting (16) into (11) one obtains after some manipula-
tion (Wu 1998) for n > 0 the very simple result

An =
∫ 2π

0

dϕ
∫ 1

0

d cosϑ cosϑ
∂Iλ
∂F

∣∣∣∣
F0

(µ(ϑ, ϕ)) an (18)

Bn =
∫ 2π

0

dϕ
∫ 1

0

d cosϑ cosϑ
∂Iλ
∂F

∣∣∣∣
F0

(µ(ϑ, ϕ)) bn. (19)

The integration for A0 leads to two additional terms and
reduces to the simple form above only if the local time–
averaged flux a0/2 is equal to the equilibrium flux F0 for
the local column.

Fig. 9. Comparison of the amplitude spectra for an l = 2 mode,
calculated with a limb darkening independent of Teff (solid
line) and with the linear expansion of the intensity (dashed
line). The spectra for the l = 1 mode are very similar and
represented by the dotted line in the plot.

Using approximations similar to those of Robinson
et al. (1982) we could simplify the relation for the inten-
sity as

Iλ = hλ(µ)F (20)

with a limb darkening function hλ. The major simplifi-
cation is that in this form the limb darkening does not
depend on the total flux and the intensity derivative in
Eq. (16) is simply given by hλ. In this case the integral
for the global coefficient A0 always reduces to the simple
form of Eq. (18). However, we will show below that this
approximation is not adequate, since the the amplitude
spectra depend very sensitively on the limb darkening and
in the derivative of Eq. (20)

∂Iλ
∂F

∣∣∣∣
F0

= hλ(µ, F0) +
∂hλ
∂F

∣∣∣∣
F0

(21)

the second term is in general not negligible.

5.2. The linear assumption

The linear assumption is to specify the local flux by

δF

F
=
δF

F

max

1
Yml (θ, φ) eiωt. (22)

If we want to determine the global flux amplitudes directly
from the local amplitudes without the intermediate step of
Fourier coefficients we need to make further assumptions.
If the coefficient a0 and the ratio an/bn are constant over
the stellar surface, it is possible to change the order of the
square root and the integration over the visible disk in
Eqs. (14), (18), (19). After some algebraic manipulations
we get

δF
F n

=

∫ 2π

0 dϕ
∫ 1

0 d cosϑ cosϑ ∂Iλ
∂F

∣∣
F0

(µ(ϑ, ϕ)) δFF n∫ 2π

0
dϕ
∫ 1

0
d cosϑ cosϑ ∂Iλ

∂F

∣∣
F0

(µ(ϑ, ϕ))
· (23)

It is common to transform the spherical harmonic
Yml (θ, φ) to a system of spherical harmonics in the co-
ordinate system (ϑ, ϕ) by

Yml (θ, φ) =
∑

−l≤m′≤l
Rlm′mY

m′

l (ϑ, ϕ).
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As was shown in several papers (e.g. Robinson et al. 1982)
all terms with m′ 6= 0 do not contribute to a flux variation
in the integrated light, because they are equivalent to a
rotating pattern with respect to an axis directed to the
observer. For the term with m′ = 0 the assumption of
a constant phase over the stellar surface is valid and the
Fourier coefficient a0 is assumed to be constant over the
surface by Eq. (22) implicitly. Consequently, we can use
Eq. (23) to calculate the amplitude of the integrated flux
with the local amplitude

δF

F

′

1
= Rl0m

δF

F

max

1
NlP l(cosϑ). (24)

The quantity Nl symbolizes the normalization of the
spherical harmonic Y 0

l and P l is the Legendre polyno-
mial. The only inclination dependent term in Eq. (24) is
the coefficient Rl0m. The amplitude (δF/F )max

1 and Rl0m
are constant over the whole surface and wavelength in-
dependent. Consequently, the normalized spectra Q are
independent of amplitude and inclination. Figure 9 shows
one example of the results for a flux independent limb
darkening and for the more general form of the linearized
intensity for the model parameters we use in this paper,
but with the linear assumption of Eq. (22). Both results
are identical for an l = 1 mode, but differ for larger l.
Even for the l = 2 modes, there are significant differences.

To test the accuracy of the linear approximation for
the intensity (Eq. (16)) we have calculated the Fourier co-
efficients directly from the integrated light curve by means
of Eqs. (11), (12) and (13) and have compared the result
with the results from the linearized intensity. We find a
very good correspondence for all wavelengths for modes
with l ≤ 3 and amplitudes less than 30%. This range is
much larger than the range, where the total flux variation
can be assumed to be linear with Teff . For even larger am-
plitudes the amplitude spectrum calculated directly from
Eq. (11) becomes inclination and amplitude dependent,
because the function hλ varies over the surface for different
flux amplitudes. Such large amplitudes are not observed,
however.

5.3. The Goldreich and Wu theory

The Goldreich and Wu theory assumes – following
Brickhill – a pressure variation with a spatial and time–
dependence described by the spherical harmonic and pe-
riod of the pulsation mode. They predict the appearance
of non–sinusoidal flux variations at the surface

δF

F
=
a0

2
+
δF

F 1
sin(ωt−α1) +

δF

F 2
sin(2ωt−α2) + ...(25)

An important result of their calculation is that the am-
plitude of the fundamental is proportional to the pres-
sure amplitude and the spatial distribution therefore still
given by the same spherical harmonic. The first overtone
varies quadratically with the pressure, which leads to the
appearance of a limited number of spherical harmonics.

The phases αn are independent of the amplitude of the
variation.

The result for the fundamental is equivalent to the
linear assumption Eq. (22) and as a consequence leads to
the same results for the normalized spectra: they depend
only on the mode number l.

The amplitude of the first overtone has a different be-
havior than the spherical harmonic of the mode over the
stellar surface. It can be written as

δF

F 2
=
δF

F

max

2

[
NlPl(cos θ)eiα2

]2 ≡ δF

F

max

2
V (θ, φ). (26)

The angle dependent function V can be expanded in a
series of spherical harmonics

V (θ, φ) =
∞∑
l′=0

l′∑
m′=−l′

cm
′

l′ Y
m′

l′ (θ, φ). (27)

It is obvious that in this case V is a polynomial of the
order 2l and consequently all coefficients cm

′

l′ vanish for
l′ > 2l, but for this discussion we only need, that the sum
has in general more than one term. Analogous to the linear
assumption we can transform each term of Eq. (27) to the
coordinate system of the observer

V (θ, φ) =
∞∑
l=0

l′∑
m′=−l′

l′∑
m′′=−l′

cm
′

l′ R
l′

m′′m′ Y
m′′

l′ (ϑ, ϕ). (28)

The relation Eq. (28) can be introduced in Eq. (26) and
we get an expression for (δF/F )2 in Eq. (23). Again, only
the terms with m′′ = 0 lead to a non–vanishing amplitude
in the integrated light. Inclination dependent quantities
are only the coefficients Rl

′

0m′ , but they are different for
all l′. Consequently, the inclination dependence does not
cancel in the normalized spectrum Q2 and the spectrum
becomes inclination dependent. In contrast to this, the
amplitude (δF/F )max

2 cancels out, and the normalized am-
plitude spectrum remains independent of the amplitude.

The 2nd overtone will not be discussed in detail. The
local flux amplitude (δF/F )3 cannot be represented by a
single (δF/F )max and consequently the normalized ampli-
tude spectra become in general also amplitude dependent.

6. Amplitude spectra from numerical calculations

To determine the normalized amplitude spectra from our
numerical results, it is possible to use the integration of
the local Fourier coefficients an and bn. However, because
the phase is not constant (see Fig. 4) over the surface and
a0 is a function of the coordinates (θ, φ) (see Fig. 5) the
expression Eq. (23) is completely useless even for m =
0 modes and we have to calculate the coefficients An and
Bn separately. This means that there is no economical
advantage to calculate the Fourier series locally and then
to integrate the coefficients over the visible disk.

We therefore decided to calculate the flux Fλ for each
time step completely numerically by using Eq. (11). This
method also avoids the disadvantage of having to use a
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Fig. 10. The amplitude dependence of the correction term
Qcorr
n . The factor Γ is displayed for our model parameters.

linearization like Eq. (16) to reach expressions for the
Fourier coefficients of the integrated flux Fλ. From the
time–dependent flux we can calculate the Fourier coef-
ficient with the aid of Eqs. (12) and (13). The numerical
results presented in the following section are based on such
integrations.

On the other hand, in order to gain more insight into
the qualitative behavior of the spectra for different am-
plitudes and inclinations, we will use simple fits for the
numerical results of the local variation, which allow then
analytic integrations for the total flux. Both approaches
are complementary: with the completely numerical simu-
lation we avoid simplifications, which may not be correct,
but we can calculate the result only for very few combi-
nations of parameters. The semi-analytical study, on the
other hand, shows the functional dependence of the results
on quantum numbers, inclination, etc.

6.1. General effects on the spectra

The phase dependence of all local Fourier coefficients and
the nonlinear dependence on the pressure variation leads
to deviations from the assumptions made traditionally for
the flux variation over the stellar surface. The intention
of this subsection is to show, how this deviation affects
the synthetic spectra for different inclinations, pulsation
amplitudes and mode numbers l.

To find an expression for the error made when using
the linear assumption, we assume a flux independent limb
darkening function and the integrated Fourier coefficients
given by Eqs. (18) and (19). We define a correction term
for the fundamental as

Qcorr
n ≡

δF
F n

(λ)
δF
F n

(λ0)
−

δF
F n

(λ)
δF
F n

(λ0)

∣∣∣∣∣
linear

. (29)

Fig. 11. The factor Λ is shows the dependence of the correc-
tion factor between the linear assumption and the numerical
simulation on inclination. The 3 curves show the factor for 3
different mode numbers (l = 1, 2, 3) and the Edington limb
darkening law. Large deviations occur near an inclination of
55 degrees.

In Appendix A we demonstrate that in a first order ap-
proximation Qcorr

1 can be separated into three factors

Qcorr
1 =

A0(λ0)I0(λ)
A0(λ)

Γ
(
δP

P max

)
Λ(i, l). (30)

The first term is practically independent of wavelength (I0

is defined in Eq. (35) in the Appendix). The second term
Γ is derived from the expansion coefficients of the local
flux as a function of the pressure variation. For finite am-
plitudes we interpret these coefficients as fit parameters to
describe the local flux as a polynomial of 2nd order up to
the maximum pressure variation, that occurs at the stel-
lar surface. This is plotted in Fig. 10. Γ is not a function
of the inclination or the mode numbers, but depends on
the stellar parameter as Teff and the pulsation period. For
our model parameters we can divide the synthetic spec-
tra in three different pressure regimes: small amplitudes
up to δP/Pmax ∼ 5%, where the function Γ is positive;
intermediate amplitudes 5% < δP/Pmax < 7%, where Γ
is approximately 0, and large amplitudes δP/Pmax > 7%
with a negative Γ. In the following 3 subsections these
cases are discussed separately for the numerical results.

The third term Λ is the inclination dependent term.
Besides this it depends on the mode numbers and wave-
length, but not on the amplitude. The results for the factor
Λ for l ≤ 3 are plotted in Fig. 11. This factor is for most
inclinations very small for l = 1 and moderate for l = 2, if
the inclination is clearly different from the latitude of the
node lines. For l = 3 the factor Λ is much larger and leads
to a large global deviation of the numerical results from
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Fig. 12. Amplitude spectra for small pressure amplitude. The
solid line and the dashed lines are results based on the spher-
ical harmonics l = 2 and l = 1 respectively. The diamonds
connected with the dotted line are the numerical results.

Fig. 13. Phase spectra for small pressure amplitude. The solid
line (l = 1) and the dashed line (l = 2) gives the predicted
phase shift for the wavelength range from 2000 Å to 6000 Å.

those using the linear assumptions for any inclination and
amplitude.

6.1.1. Small amplitudes

In the previous section we discussed the effects of the
nonlinear behavior of the light curves on the amplitude
spectra of the fundamental with some approximations.
To find the correct spectra we now calculate the Fourier

Fig. 14. Amplitude spectra for intermediate amplitude. The
lines have the same meaning as in Fig. 12.

coefficients directly from the integrated light curves in a
strictly numerical way.

As an illustrating example we take the l = 2 mode with
a maximum pressure amplitude of 2%. For this amplitude
the light curves are sinusoidal in a good approximation,
so we can restrict the discussion to the fundamental of the
mode.

From Fig. 11 we do not expect very large deviations
from the linear result for most inclinations. To show the
effect, we take an inclination of 60o near the latitude of the
node line, where we expect a moderate deviation. The nu-
merical result is plotted in Fig. 12, together with the result
of the linear assumption, that is supported by the theory
of Goldreich and Wu. All amplitudes in this and the fol-
lowing similar figures have been normalized to 1 at 5500 Å.
Although the effect is not very large, it is important for
mode identification, because of the generally small differ-
ences between the calculations for different mode numbers.

Deviations in the spectra already for small amplitudes
are suggested by the analytical calculations in the previous
subsection, but are not obvious in the plot of the absolute
amplitude Fig. 3, which grows linearly with the pressure
amplitudes up to ∼5% pressure amplitude. Consequently,
the deviation has to be an effect of the phase shift for
small amplitudes. This phase shift should be visible in the
integrated light as well. Figure 13 gives the numerical pre-
diction for the phase shift for the same mode and modes
with l = 1. In contrast to the prediction of Goldreich and
Wu, we expect a small phase shift of a few degrees over
the spectral range for the l = 2 modes.

6.1.2. Intermediate amplitudes

The amplitude dependent factor Γ is very small in this
region and we expect practically no differences to the
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Fig. 15. Amplitude spectra for the first overtone and interme-
diate amplitude. The lines have the same meaning as in Fig. 12.

Fig. 16. Amplitude spectra for large amplitude. The lines have
the same meaning as in Fig. 12.

predictions of Goldreich and Wu. Figure 14 shows the
numerical result for the same mode and inclination as
Fig. 12, but for a pressure amplitude of 5%. The spec-
tra for the numerical prediction and the Goldreich and
Wu theory are very similar.

In contrast to the small amplitude case, the light
curves for 5% pressure amplitude are non–sinusoidal with
large flux amplitudes. We can calculate the expected devi-
ation from the predictions of Goldreich and Wu analogous
to Eq. (30) and find for this region a small deviation for
the first overtone as well. Figure 15 shows a comparison
of the numerical result, with the predicted spectrum for a

Fig. 17. Amplitude spectra for the first overtone and large
amplitudes. The lines have the same meaning as in Fig. 12.

quadratic dependence of the flux amplitude on the pres-
sure amplitude.

6.1.3. Large amplitudes

For increasing maximum pressure amplitude the deviation
factor Γ becomes smaller and finally negative. For really
large pressure amplitude we expect again a significant de-
viation from the Goldreich and Wu result. Figure 16 shows
the numerical result for a 15% pressure amplitude. As ex-
pected from the analytical result, the difference to the
Goldreich and Wu result has the opposite sign and the
spectrum of the l = 2 mode becomes very similar to that
of an l = 1 mode. The numerical result for the l = 1 mode
does not significantly change for an inclination of 60o (see
Fig. 11) and modes with l = 2 can easily be confused with
l = 1.

The first overtone is significant for large amplitudes as
well. In contrast to the intermediate amplitudes, a differ-
ence from the predicted result of Goldreich and Wu ap-
pears. For our example Fig. 17 shows the numerical result
in comparison with the quadratic dependence of the flux
amplitude.

For l = 3 the deviation of the numerical results
from the results of the linear assumption is much larger.
Figure 18 shows one example for a large deviation. In con-
trast to a rapidly increasing amplitude in the UV the
amplitude remains almost constant. In this regime the
prediction of the variation from Eq. (30) can be only qual-
itative. In general, the amplitude increase towards the UV
is caused by the decreasing “effective visible area” due to
the larger limb darkening. This effect becomes significant,
when the effective area is comparable in size to the spatial
scale of the light variations on the surface of the star. For
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Fig. 18. Amplitude spectra for l = 3 and large amplitudes.
The lines have the same meaning as in Fig. 12.

the large amplitudes the spatial structure of the l = 3 flux
variation is more complex than the unperturbed spherical
harmonic and the cancellation effects set in only farther
in the UV.

7. Conclusions

In the past, the method of time–resolved spectroscopy has
been based on the assumption – called “linear” through-
out this paper – that the flux varies with the spherical
harmonic of the pulsation mode over the surface of the
ZZ Ceti stars. The numerical light curve simulation shows
that this assumption is questionable in many situations.
For small amplitudes with sinusoidal lightcurves, only the
absolute amplitude varies like the spherical harmonic of
the mode. The phase shift leads to normalized amplitude
spectra, which depend on inclination and pulsation (pres-
sure) amplitude for mode numbers l > 2. For large ampli-
tudes (>10% in pressure) the absolute amplitude of the
flux depends non–monotonously on the pressure ampli-
tude and the flux variation shows maxima at different
latitudes than the spherical harmonic of the mode. The
numerical results show relatively good correspondence to
traditionally calculated amplitude spectra for intermedi-
ate amplitudes (∼5%) in pressure, with non–sinusoidal
light curves. In this regime, the phase becomes stationary
and the absolute amplitude varies in good correspondence
to the spherical harmonic of the mode; the numerical re-
sults are close to the results of the perturbation analysis
of Goldreich and Wu.

Another result of our simulations is the existence of
a maximum surface flux amplitude. This is a reaction
of the convection zone on a predefined pressure varia-
tion in deeper layers, and should not be confused with
the amplitude saturation of the pulsation as studied by

Goldreich & Wu (1999). The amplitude of the photo-
spheric flux is reduced by the inert reaction of the temper-
ature structure in the convective layer to the changing in-
put flux. The decrease in the thermal heat flux is converted
to kinetic energy of the pulsation as discussed above, and
this convection region is therefore a driving region for the
pulsation. The extent of this conversion depends on the
thermal time scale of the convection zone.

In our model calculations for large amplitudes the
time–averaged depth of the convection zone becomes much
larger than in the corresponding static model. The thermal
time scale then increases with the pulsation amplitude,
leading to a reduction of the surface flux amplitude. This
is the reason for the existence of a maximum amplitude for
the surface flux. It also explains the return to sinusoidal
variations for large pressure amplitudes: the convection
zone becomes so thick that variations during one cycle do
not decrease its depth enough for the appearance of higher
overtones.

While our calculations cannot determine the maximum
pressure amplitude that can be reached in a pulsating star,
one prediction is that observable flux amplitudes should
not exceed 10%, for the parameters used in this paper. The
maximum flux amplitudes support the dominance of small
l in the observed light curves and lead to the prediction
that the dominant pulsation modes are l = 1, if l = 1
modes and modes with larger l are unstable, for a large
amplitude range, independent of the actual amplitudes of
the modes.

While nonlinear effects are well known for large ob-
served amplitude pulsations, the present study reaches the
surprising conclusion that the amplitudes and phases can
be described fairly accurately by the linear theory as de-
veloped by Robinson et al. (1982) for the fundamental and
Wu (1998) for higher harmonics.

On the other hand, the observation of small ampli-
tudes in the surface integrated light does not necessarily
guarantee that these effects are absent. Deviations from
the traditional interpretation could occur in spite of small
observed amplitudes under the following conditions

- the pressure amplitude is larger than about 12%, that
is, in the range were the flux amplitude decreases again
with increasing pressure amplitude;

- the flux variations are intrinsically large on the surface
but the inclination is close to the latitude of a node
line;

- the mode number l is large.

In all these cases, one of the correction factors describing
the difference between our numerical results and the am-
plitudes calculated with the linear assumptions becomes
large, and mode identification from time–resolved spec-
troscopy will only be possible with extended numerical
simulations.

All conclusions are obtained for a special set of stellar
and pulsational parameters. The effects discussed may be
more or less important for other ranges of log g and Teff .
We have also not taken into account that in general more
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than one pulsation mode is present in a star. The modes
will be influenced by the presence of other modes and
by their properties even well below the convection zone.
These effects are beyond the scope of the present analysis.
We do not, however, expect that the main conclusion will
change: the mechanism that leads to non–sinusoidal light
curves for large flux variations can be important for a
correct identification of the pulsation modes using time–
resolved spectroscopy, for any observed amplitude of the
flux.
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Appendix A: Difference between the linear spectra
and the numerical results

To find a semi-analytic expression for the difference be-
tween the synthetic amplitude spectra from the linear the-
ory and our numerical calculation, we approximate the
local Fourier coefficients a1 and b1 as a quadratic func-
tion of the local pressure amplitude. Assuming a pressure
variation with the spherical harmonic of the mode on the
stellar surface we can write for the modes with l = 0

a1 ≈ α1

(
δP

P max

)
P l + α2

(
δP

P max

)
(P l)2. (31)

The quatities α1, α2 are given by the fit to the numerical
results and thus depend on the maximum pressure ampli-
tude on the surface.

In a similar way as for the spherical harmonics we can
also expend (P l)2 with a finit number of P l′ . In this first
order approximation we only need the term with l′ = 0
of this expansion (the next higher term belongs to l′ = 2
and is strongly reduced by the cancelation effect). We can
write

(P l)2 ≈ P 0

2l+ 1
=

1
2l + 1

· (32)

Now it is possible to perform the rotation to the coordi-
nate system of the observer in the space of the spherical
harmonic. The result is a mixing of all possible quantum
numbers m′ to the same l. As in the linear case we only
have to consider the contribution of m′ = 0 to the visible
pulsation amplitude and get

a1 ≈ α1P (cos i) P (cosϑ) + α2
1

2l+ 1
, (33)

or after the integration over the visible disc

A1 ≈ α1P (cos i)Il(λ, F0) + α2
1

2l + 1
I0(λ, F0) (34)

with

Il ≡ 2π
∫ 1

0

d cosϑ cosϑ
∂I

∂F

∣∣∣∣
F0

(cosϑ)P l(cosϑ). (35)

To find the Fourier amplitude we insert this expression
and the anlogous equation for B1 in (14) and get for small
α2, β2 (β1 and β2 are the fit parameters for B1)

δF
F 1
≈ 2
A0

√
(α2

1 + β2
1)(P l(cos i)Il)2 · · ·

· · ·+ (α1α2 + β1β2)
P l(cos i)I0Il

2l+ 1
(36)

or by expanding the sqare root

δF
F 1
≈ 2
A0

√
α2

1 + β2
1 P l(cos i) Il

+
2
A0

α1α2 + β1β2

(2l+ 1)
√
α2

1 + β2
1

I0. (37)

The first term of this expression is proportional to the
result of the linear theory with the assumption of a flux
variation with a spherical harmonic. The second term is
the first order nonlinear correction term for the numerical
result. For this first order approximation it is sufficient
to identify the mean flux A0/2 with the flux of the non-
pulsating star I0. We get for the correction term of the
amplitude

δF
F

corr

1
≈ α1α2 + β1β2

(2l + 1)
√
α2

1 + β2
1

· (38)

This expression is a function of Teff of the equilibrium
model, the pulsation mode and the maximum pulsation
amplitude of the model; it does not depend on the wave-
length nor on the inclination. The linear term, however,
which is normally dominant, is a very sensitive function
of the inclination.

Following the standard strategy to find an expression,
which eliminates the inclination dependence of the linear
term, we normalize Eq. (37) to the amplitude at a refer-
ence wavelength λ0 (e.g. = 5500 Å) and obtain for the
normalized spectrum

Q1 ≈ Qlin
1 +Qcorr

1

with the linear normalized spectrum Qlin
1 and

Qcorr
1 ≡ A0(λ0)I0(λ)

A0(λ)
Γ
(
δP

P

)
Λ(i, l). (39)

The inclination dependent term Λ(i, l) is given by

Λ(i, l) ≡ 1
2l + 1

1
P l(cos i)Il(λ0)

(40)

and the amplitude dependent term by

Γ
(
δP

P

)
≡ α1α2 + β1β2

α2
1 + β2

1

· (41)
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