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Abstract. The solar convection zone may be a mechanism for generating the magnetic fields in the corona that
create and thermally insulate quiescent prominences. This connection is examined here by numerically solving a
diffusion equation with convection (below the photosphere) matched to Laplace’s equation (modeling the current
free corona above the photosphere). The types of fields formed resemble both Kippenhahn-Schlüter and Kuperus-
Raadu configurations with feet that drop into supergranule boundaries.
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1. Prominence models

The atmosphere of the Sun, from the base of the chro-
mosphere through the corona, is structured by magnetic
fields. Presumably generated in the convection zone these
fields break through the photosphere stimulating a vari-
ety of plasma formations, from small fibrils that outline
convection cells to gigantic solar quiescent prominences
that tower above the surface. In this paper we attempt
a connection between the ejection of magnetism by con-
vection cells to the structure of these prominences. The
term “prominence” can refer to any formation of cool
dense material in the corona but a quiescent prominence is
the largest and most stable of these formations. First ob-
served during eclipses in the middle ages, they have been
described as both “clouds in the lunar atmosphere” and
“mountains on the Sun”. With the development of photo-
graphic and spectrographic methods they are now known
to be glowing masses of gas suspended in the Sun’s atmo-
sphere by magnetic fields.

The first mathematical models were developed by
Menzel (1951) and Dungey (1953). These early mod-
els proved unrealistic. For example, Menzel’s model pre-
dicted prominences that were as wide as they were
tall. Better models were developed by Kippenhahn &
Shlüter (KS) (1957) and Kuperus & Raduu (KR) (1974).
These models have better withstood the test of time
and are the basis for much work on quiescent promi-
nences. For detailed accounts of the history and physics
of prominences see the books “Solar Prominences” by
Tandberg-Hanssen (1974) and “Dynamics and Structure
of Quiescent Solar Prominences” edited by Priest (1989).
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Marvelous photographs of these magnificent structures
can also be found on the internet – see for example
http://mesola.obspm.fr (a site run by INSU/CNRS
France) and http://sohowww.estec.esa.nl (the web
site of the Solar and Heliospheric Observatory).

The field lines in the models by KS and KR are line tied
to the photosphere (see McKaig 2001). In a previous paper
(McKaig 2001) photospheric motions were simulated by
a one-dimensional boundary condition and KS/KR type
fields were obtained in the corona. In this paper we will
numerically derive magnetic field lines in the corona from
two-dimensional convection below the photosphere.

2. Magnetoconvection

The basic equation of kinematical magnetoconvection,
where a velocity field v is imposed on a plasma and its
effect on the magnetic field B computed, is

∂B

∂t
= ∇× (v ×B) + η∇2B, (1)

where η is the magnetic diffusivity. This equation has been
solved both analytically and numerically in various geome-
tries. Some examples are Parker (1963) who obtains exact
solutions on infinite and semi-infinite intervals, and Weiss
(1977) who numerically solves the equation over finite do-
mains. For a comprehensive review of magnetoconvection
see Proctor & Weiss (1982) and Weiss (1966).

In much of magnetoconvection the fluid fills the whole
of the domain and the boundaries are assumed to be per-
fectly conducting. This ties the magnetic field lines to the
boundary and confines the field to the region of fluid flow.
Even though the equation is time dependent, an initially
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Fig. 1. The stream function ψ(x, y) = − sin x sinh y with magnetic field lines computed using the boundary conditions: g1(y) =
g2(y) = 0, h1(x) = 0, h2(x) = 100
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Fig. 2. The stream function ψ(x, y) = − sin x sinh y with magnetic field lines computed using the boundary conditions: g1(y) =

g2(y) =

{
100, y < 0
0, y > 0

, h1(x) = h2(x) = 0
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Fig. 3. The stream function ψ(x, y) = − sin x sinh y with magnetic field lines computed using the boundary conditions: g1(y) =
g2(y) = 0, h1(x) = 100, h2(x) = 0
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Fig. 4. The stream function ψ(x, y) = − sin(x)e−y with magnetic field lines computed using the boundary conditions: g1(y) =
g2(y) = 0, h1(x) = 0, h2(x) = 100
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Fig. 5. The stream function ψ(x, y) = − sin(x)e−y with magnetic field lines computed using the boundary conditions: g1(y) =

g2(y) =

{
100, y < 0
0, y > 0

, h1(x) = h2(x) = 0
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Fig. 6. The stream function ψ(x, y) = − sin(x)e−y with magnetic field lines computed using the boundary conditions: g1(y) =
g2(y) = 0, h1(x) = 100, h2(x) = 0
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uniform field is expelled by the convection to the bound-
aries and reaches a steady-state. In an attempt to have
convection expel magnetism from below the photosphere
into the corona we will solve (1) with ∂

∂t ≡ 0 (steady
state has been achieved) on the interval −L < x < L and
−d < y < d. The convection zone will be y < 0 where
v will be prescribed, while y > 0 will be a current free
corona where ∇×B = 0.

3. The mathematical model

If a vector potential A(x, y) is introduced such that B =
∇ × (0, 0, A) = (∂A∂y ,−

∂A
∂x , 0), then the contours given by

A = constant will give the magnetic field lines, A being
essentially a stream function for B. In the corona (y > 0),
∇ × B = 0 becomes Laplace’s equation, ∇2A = 0. In
the convection zone (y < 0), we cast (1) with ∂

∂t ≡ 0 in
2-D which in terms of A gives a diffusion equation with
convection:

v1(x, y)
∂A

∂x
+ v2(x, y)

∂A

∂y
− η∇2A = 0, (2)

where v = 〈v1, v2〉 is known. This equation can be
changed to a Helmholtz equation by the transformation
A = Λ(x, y)eH(x,y) where H = φ

2η and φ(x, y) is the
velocity potential. This gives

η∇2Λ + f(x, y)Λ = 0 (3)

where

f(x, y) =
1
4

[
2(
∂v1

∂x
+
∂v2

∂y
)− 1

η
(v2

1 + v2
2)

]
. (4)

To make this transformation possible v is restricted to
being conservative but it makes the numerical solution
more tractable. It not only eliminates the first derivative
terms but since v ≡ 0 in the corona ∇2A = 0 becomes
∇2Λ = 0 under the transformation A = ΛeH . So by set-
ting f(x, y) = 0 for y > 0 we force the two solutions to
match at the photosphere.

4. The numerical method

The numerical method used was the finite difference
method. Equation (3) was solved on the computational
box −L < x < L and −d < y < d, with f(x, y) set to zero
for 0 < y < d. The box was split into an n×m mesh and
the derivatives were approximated by a central difference
scheme:

uxx ≈
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2

uyy ≈
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

k2

where h = 2L
n and k = 2d

m . The boundary conditions were
specified as g1(y) and g2(y) on x = L and x = −L re-
spectively and h1(x) and h2(x) on y = d and y = −d re-
spectively. The scheme was programmed on Mathematica

which has well tested subroutines for solving the large lin-
ear systems created by the finite difference method. Once
the solution for Λ(x, y) was obtained it was multiplied by
e
φ
2η to get the solution for A(x, y). A contour plot of A

then gives the magnetic field lines.

5. Results

All runs were made with L = 6.3 ≈ 2π and d = 4. The
first stream function used was ψ(x, y) = − sinx sinh y.
This models a deep convection zone with a downflow at
the center. This stream function was used with different
boundary conditions in Figs. 1, 2 and 3. The stream func-
tion has been overlayed with the field lines.

The next stream function, ψ(x, y) = − sin(x)e−y , has
an upflow at the center and the same boundary conditions
were applied in Figs. 4, 5 and 6. An exact solution to
(1) with ∂

∂t ≡ 0 using this stream function was obtained
by Parker (1963) for x, y → ±∞. Figure 6 resembles his
solution.

6. Conclusions

This model shows that convection is capable of expelling
magnetic fields into the corona which have the topology
needed to form quiescent prominences. Many of the dia-
grams have “feet” that form in the downflow regions of the
convection cells. The fields have the magnetic dips present
in the KS model as well as the sheet type formations of
the KR model. This provides many regions where plasma
can condense thus accounting for the filamentry structure
observed in quiescent prominences.
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