Open Access

Table 1

Definitions.

Name Symbol + Definition
General
Keplerian frequency ΩK
Stopping time τf
Stokes number St = τf ΩK
Vertical turbulent diffusivity Kt
Dimensionless in plane α-viscosity αs
Dimensionless vertical α-viscosity αz=κtΩK/cg2\[{\alpha _z} = {\kappa _t}{\Omega _K}/c_g^2\]
Vertical Schmidt number Scz = αS/αz

Gas

Gas sound speed cg
Effective gas sound speed c˜q=1+αzcq\[{\tilde c_q} = \sqrt {1 + {\alpha _z}} {c_q}\]
Surface density of gas g
Gas Toomre parameter Qg=c˜gΩKπGΣg\[{Q_g} = \frac{{{{\widetilde c}_g}{\Omega _K}}}{{\pi G{\Sigma _g}}}\]
Gas turbulent pressure scale height Hg=c˜g/ΩK\[{H_g} = {\rm{ }}{\widetilde c_g}/{\Omega _K}\]
Gas gravito-turbulent pressure scale height Hgsg\[H_g^{sg}\]

Dust

Dust sound speed cd=κt/τf\[{c_d} = \sqrt {{\kappa _t}/{\tau _f}} \] (Eq. (23))
Midplane dust sound speed cd,mid=αzStcg\[{c_{d,{\rm{mid}}}} = \sqrt {\frac{{{\alpha _{\rm{z}}}}}{{{\rm{St}}}}} {c_g}\]
Effective dust sound speed c˜d=ξ1+ξ2cd,mid\[{\widetilde c_d} = \frac{\xi }{{\sqrt {1 + {\xi ^2}} }}{c_{d,{\rm{mid}}}}\]
Surface density of dust d
Effective dust Toomre parameter Qd=c˜dΩKπGΣd\[{Q_d} = \frac{{{{\widetilde c}_d}{\Omega _K}}}{{\pi G{\Sigma _d}}}\]
Dust diffusive scale height Hd=c˜d/ΩK\[{H_d} = {\widetilde {\rm{c}}_{\rm{d}}}/{\Omega _K}\]
Dust gravito-diffusive scale height Hdsg\[H_d^{sg}\] (Eq. (23))

Gas and dust combined

Gas-to-dust temperature ξ=c˜gcd,mid=(1+αz)αz St\[\xi = \frac{{{{\widetilde c}_g}}}{{{c_{d,{\rm{mid}}}}}} = \sqrt {\frac{{(1 + {\alpha _{\rm{z}}})}}{{{\alpha _{\rm{z}}}}}{\rm{ St}}} \]
Effective gas-to-dust temperature ξ˜=c˜gc˜d,mid=1+ξ2\[\widetilde \xi = \frac{{{{\widetilde c}_g}}}{{{{\widetilde c}_{d,{\rm{mid}}}}}} = \sqrt {1 + {\xi ^2}} \]
3D Toomre parameter Qi3D=π2ΩK2π2Gρi,mid\[Q_i^{3D} = \sqrt {\frac{\pi }{2}} \frac{{\Omega _K^2}}{{{\pi ^2}G{\rho _{i,{\rm{mid}}}}}}\]
General Toomre parameter
for a turbulent bi-fluid
Qbi-fluid3D=(1Qg3D+1Qd3D)1\[Q_{^{bi - fluid}}^{3D} = {\left( {\frac{1}{{Q_g^{3D}}} + \frac{1}{{Q_d^{3D}}}} \right)^{ - 1}}\

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.