Open Access

Table 2

Astrometric bias.

Diatt. Partial polarization x (ɛ =+1) y (ɛ = −1) Total (ɛ = 0)
P = 0 12cos2θα0${1 \over 2}\cos 2\theta \overrightarrow {{\alpha _0}} $ 12cos2θα0$ - {1 \over 2}\cos 2\theta \overrightarrow {{\alpha _0}} $ 0
δτ = 0 Circular 14[2cos2θ+Psin4θcosγ]α0${1 \over 4}[2\cos 2\theta + P\sin 4\theta \cos \gamma ]\overrightarrow {{\alpha _0}} $ 14[2cos2θ+Psin4θcosγ]α0${1 \over 4}[ - 2\cos 2\theta + P\sin 4\theta \cos \gamma ]\overrightarrow {{\alpha _0}} $ 0
Linear 14[2cos2θ+2Pcos2αsin22θ+Psin4θsin2αcosγ]α0${1 \over 4}\left[ {2\cos 2\theta + 2P\cos 2\alpha {{\sin }^2}2\theta + P\sin 4\theta \sin 2\alpha \cos \gamma } \right]\overrightarrow {{\alpha _0}} $ 14[2cos2θ+2Pcos2αsin22θ+Psin4θsin2αcosγ]α0${1 \over 4}\left[ { - 2\cos 2\theta + 2P\cos 2\alpha {{\sin }^2}2\theta + P\sin 4\theta \sin 2\alpha \cos \gamma } \right]\overrightarrow {{\alpha _0}} $ 12Pcos2αα0${1 \over 2}P\cos 2\alpha \overrightarrow {{\alpha _0}} $
P = 0 12[cos2θ+δττsin22θ]α0${1 \over 2}\left[ {\cos 2\theta + {{\delta \tau } \over \tau }{{\sin }^2}2\theta } \right]\overrightarrow {{\alpha _0}} $ 12[cos2θ+δττsin22θ]α0$- {1 \over 2}\left[ {\cos 2\theta + {{\delta \tau } \over \tau }{{\sin }^2}2\theta } \right]\overrightarrow {{\alpha _0}} $ 12δττα0${1 \over 2}{{\delta \tau } \over \tau }\overrightarrow {{\alpha _0}} $
δτ ≠ 0 Circular 14[2cos2θ+2δττsin22θ+Psin4θcosγ]α0${1 \over 4}\left[ {2\cos 2\theta + 2{{\delta \tau } \over \tau }{{\sin }^2}2\theta + P\sin 4\theta \cos \gamma } \right]\overrightarrow {{\alpha _0}} $ 14[2cos2θ+2δττsin22θ+Psin4θcosγ]α0${1 \over 4}\left[ { - 2\cos 2\theta + 2{{\delta \tau } \over \tau }{{\sin }^2}2\theta + P\sin 4\theta \cos \gamma } \right]\overrightarrow {{\alpha _0}} $ 12δττα0${1 \over 2}{{\delta \tau } \over \tau }\overrightarrow {{\alpha _0}} $
Linear 14[2cos2θ+2(Pcos2α+δττ)sin22θ+Psin4θsin2αcosγ]α0${1 \over 4}\left[ {2\cos 2\theta + 2\left( {P\cos 2\alpha + {{\delta \tau } \over \tau }} \right){{\sin }^2}2\theta + P\sin 4\theta \sin 2\alpha \cos \gamma } \right]\overrightarrow {{\alpha _0}} $ 14[2cos2θ+2(Pcos2α+δττ)sin22θ+Psin4θsin2αcosγ]α0${1 \over 4}\left[ { - 2\cos 2\theta + 2\left( {P\cos 2\alpha + {{\delta \tau } \over \tau }} \right){{\sin }^2}2\theta + P\sin 4\theta \sin 2\alpha \cos \gamma } \right]\overrightarrow {{\alpha _0}} $ 12(Pcos2α+δττ)α0${1 \over 2}\left( {P\cos 2\alpha + {{\delta \tau } \over \tau }} \right)\overrightarrow {{\alpha _0}} $

Notes. Astrometric bias as a function of the diattenuation properties of the interferometer, of the polarization of the source and of the output polarization axis (either split or combined polarizations). The expressions are the direct application of Eq. (36). Differential retardance, degree of polarization and diattenuation, and supposed to be small.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.