Open Access

Table 1

Visibility phase shifts.

Diatt. Partial polarization x (ε = +1) y (ε = −1) Total (ε = 0)
τx = τy P = 0 atan(cos2θtan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {\cos 2\theta \tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$ atan(cos2θtan(12ΔΔψ))$- {\mathop{\rm atan}\nolimits} \left( {\cos 2\theta \tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$ 0
Circular atan(cos2θsin(12ΔΔψ)cos(12ΔΔψ)Psin2θcosγ)${\mathop{\rm atan}\nolimits} \left( {{{\cos 2\theta \sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) - P\sin 2\theta \cos \gamma }}} \right)$ atan(cos2θsin(12ΔΔψ)cos(12ΔΔψ)Psin2θcosγ)$-{\mathop{\rm atan}\nolimits} \left( {{{\cos 2\theta \sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) - P\sin 2\theta \cos \gamma }}} \right)$ 0
Linear atan([Pcos2α+cos2θ]sin(12ΔΔψ)[1+Pcos2θcos2α]cos(12ΔΔψ)Psin2θsin2αcosγ)${\mathop{\rm atan}\nolimits} \left( {{{[P\cos 2\alpha + \cos 2\theta ]\sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {[1 + P\cos 2\theta \cos 2\alpha ]\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) - P\sin 2\theta \sin 2\alpha \cos \gamma }}} \right)$ atan([Pcos2αcos2θ]sin(12ΔΔψ)[1Pcos2θcos2α]cos(12ΔΔψ)+Psin2θsin2αcosγ)${\mathop{\rm atan}\nolimits} \left( {{{[P\cos 2\alpha - \cos 2\theta ]\sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {[1 - P\cos 2\theta \cos 2\alpha ]\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) + P\sin 2\theta \sin 2\alpha \cos \gamma }}} \right)$ atan(Pcos2αtan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {P\cos 2\alpha \tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$

τxτy P = 0 atan([ τx2cos2θτy2sin2θ ][ τx2cos2θ+τy2sin2θ ]tan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {{{\left[ {\tau _x^2{{\cos }^2}\theta - \tau _y^2{{\sin }^2}\theta } \right]} \over {\left[ {\tau _x^2{{\cos }^2}\theta + \tau _y^2{{\sin }^2}\theta } \right]}}\tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$ atan([ τx2sin2θτy2cos2θ ][ τx2sin2θ+τy2cos2θ ]tan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {{{\left[ {\tau _x^2{{\sin }^2}\theta - \tau _y^2{{\cos }^2}\theta } \right]} \over {\left[ {\tau _x^2{{\sin }^2}\theta + \tau _y^2{{\cos }^2}\theta } \right]}}\tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$ atan((τx2τy2)(τx2+τy2)tan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {{{\left( {\tau _x^2 - \tau _y^2} \right)} \over {\left( {\tau _x^2 + \tau _y^2} \right)}}\tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$
circ. atan([ τx2cos2θτy2sin2θ ]sin(12ΔΔψ)[ τx2cos2θ+τy2sin2θ ]cos(12ΔΔψ)Psin2θcosγ)${\mathop{\rm atan}\nolimits} \left( {{{\left[ {\tau _x^2{{\cos }^2}\theta - \tau _y^2{{\sin }^2}\theta } \right]\sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {\left[ {\tau _x^2{{\cos }^2}\theta + \tau _y^2{{\sin }^2}\theta } \right]\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) - P\sin 2\theta \cos \gamma }}} \right)$` atan([ τx2sin2θτy2cos2θ ]sin(12ΔΔψ)[ τx2sin2θ+τy2cos2θ ]cos(12ΔΔψ)+Psin2θcosγ)${\mathop{\rm atan}\nolimits} \left( {{{\left[ {\tau _x^2{{\sin }^2}\theta - \tau _y^2{{\cos }^2}\theta } \right]\sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {\left[ {\tau _x^2{{\sin }^2}\theta + \tau _y^2{{\cos }^2}\theta } \right]\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) + P\sin 2\theta \cos \gamma }}} \right)$ atan((τx2τy2)(τx2+τy2)tan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {{{\left( {\tau _x^2 - \tau _y^2} \right)} \over {\left( {\tau _x^2 + \tau _y^2} \right)}}\tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$
lin. atan([ τx2cos2θ(1+Pcos2α)τy2sin2θ(1Pcos2α) ]sin(12ΔΔψ)[ τx2cos2θ(1+Pcos2α)+τy2sin2θ(1Pcos2α) ]cos(12ΔΔψ)Psin2θsin2αcosγ)${\mathop{\rm atan}\nolimits} \left( {{{\left[ {\tau _x^2{{\cos }^2}\theta (1 + P\cos 2\alpha ) - \tau _y^2{{\sin }^2}\theta (1 - P\cos 2\alpha )} \right]\sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {\left[ {\tau _x^2{{\cos }^2}\theta (1 + P\cos 2\alpha ) + \tau _y^2{{\sin }^2}\theta (1 - P\cos 2\alpha )} \right]\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) - P\sin 2\theta \sin 2\alpha \cos \gamma }}} \right)$ atan([ τx2sin2θ(1+Pcos2α)τy2cos2θ(1Pcos2α) ]sin(12ΔΔψ)[ τx2sin2θ(1+Pcos2α)+τy2cos2θ(1Pcos2α) ]cos(12ΔΔψ)+Psin2θsin2αcosγ)${\mathop{\rm atan}\nolimits} \left( {{{\left[ {\tau _x^2{{\sin }^2}\theta (1 + P\cos 2\alpha ) - \tau _y^2{{\cos }^2}\theta (1 - P\cos 2\alpha )} \right]\sin \left( {{1 \over 2}\Delta \Delta \psi } \right)} \over {\left[ {\tau _x^2{{\sin }^2}\theta (1 + P\cos 2\alpha ) + \tau _y^2{{\cos }^2}\theta (1 - P\cos 2\alpha )} \right]\cos \left( {{1 \over 2}\Delta \Delta \psi } \right) + P\sin 2\theta \sin 2\alpha \cos \gamma }}} \right)$ atan((τx2τy2)+(τx2+τy2)Pcos2α(τx2+τy2)+(τx2τy2)Pcos2αtan(12ΔΔψ))${\mathop{\rm atan}\nolimits} \left( {{{\left( {\tau _x^2 - \tau _y^2} \right) + \left( {\tau _x^2 + \tau _y^2} \right)P\cos 2\alpha } \over {\left( {\tau _x^2 + \tau _y^2} \right) + \left( {\tau _x^2 - \tau _y^2} \right)P\cos 2\alpha }}\tan \left( {{1 \over 2}\Delta \Delta \psi } \right)} \right)$

Notes. Visibility phase shift as a function of the diattenuation properties of the interferometer, of the polarization of the source and of the output polarization axis (either split or combined polarizations). The expressions are the direct application of Eq. (27).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.