\begin{table}%t2 %\centering \par \caption {\label{param} The parameters for the two ensembles in the PDR model in IRS1.} \scriptsize \begin{tabular}{lclccccc } \hline\hline \noalign{\smallskip} $\langle n_{\rm ens}\rangle$& $M_{\rm ens}$& $\chi$ & [$M_{\rm min},M_{\rm max}$] &{\bf $N$\tablefootmark{1}\hspace*{0.15cm} }& $f_{\rm V}$& $f_{A}$\tablefootmark{2} \\ (cm$^{-3}$) & ($M_\odot$) &(Draine) & ($M_\odot$) & & & \\ \hline {\bf Hot:} & & & & & & \\ $1.8\times 10^6$ & 14 & $2.3\times 10^5$ & [0.008, 7] & 151 & 0.42--0.73 &1.3 \\ {\bf Cool:} & & & & & & \\ $1.3\times 10^6$ & 54--250 & 27 & [0.008, 27] & 413--1913 & 0.07--0.34 & 0.6--2.6 \\ \hline \end{tabular} \tablefoot { \tablefoottext{1} {Number of all clumps;} \tablefoottext{2} {assuming hot clumps are situated approximately 7$\arcsec$ away from IRS1; $f_{\rm V}$ volume filling factor within a shell with $R_{\rm V,inner}=5\arcsec$ and $R_{\rm V,outer}=11$--13$\arcsec$; $f_{\rm A}$ area filling factor with $R_{\rm A}=7\arcsec$ for the hot component. For the cold component, $R_{\rm V,inner}=11$--13$\arcsec$, $R_{\rm V,outer}=40\arcsec$, and $R_{\rm A}=40\arcsec$.}} \end{table}