\begin{table}%t1 \caption{\label{tab:1}Subsamples used to measure $w(\theta)$, and best-fit power-law \mbox{parameters}.} \par %\centering \par \begin{tabular}{lccccc} \hline \hline \noalign{\smallskip} Sample & $N$ & $A$ & $\delta$ & $A_{0.8}$ & $A_{2.0}$ \\ \hline $S_{250}>33$ & 6317 & $-0.01\pm 0.07$& $1.7\pm 0.2$ &$-$0.00 & $-$0.01\\ $S_{350}>36$ & 2754 & $0.20\pm 0.07$ & $2.0\pm 0.2$ & 0.11 & 0.20\\ $S_{350}>36^{\ast}$ & 1633 & $0.50 \pm 0.09$ & $2.8\pm 0.5$ & 0.21 & 0.50\\ $S_{500}>45$ & 304 & $1.24\pm 1.6$ & $2.4\pm 1.3$ & 0.51 & 1.24\\ $S_{500}/S_{250}>0.75$ & 808 & $0.92 \pm 0.3$ & $2.1\pm 0.5$ & 0.38 & 0.92\\ \hline \end{tabular} \tablefoot {$N$ is the number of sources in each sample. $A$ is the amplitude at $1'$ and $\delta$ is the power-law slope. $A_{0.8}$~and $A_{2.0}$ are the amplitudes at~$1'$ with the slopes fixed at~$0.8$ and~$2.0$ respectively. \\ \tablefoottext{\ast}{This is the $350+$ sample which has the additional constraint that source must be detected at ${>}3\sigma$ in the other two bands.}} \vspace*{-3mm}\end{table}