Table 1: Predicted temporal slopes $\alpha $ for various afterglow scenarios based on the measured spectral slopes $\beta _{\rm opt}=0.64 \pm 0.03$(Sect. 3.2) and $\beta _{\rm X} = 1.01^{+0.28}_{-0.25}$(Sect. 3.1). These values have to be compared with the measured $\alpha _{\rm opt}=1.67\pm 0.07$ and $\alpha _{\rm X}= 1.52\pm 0.14$. Assuming a jet, for $t<t_{\rm break}$ the isotropic model holds, whereas for $t>t_{\rm break}$ the jet model applies (e.g. Zhang & Mészáros 2004). The $\sigma $-level represents the difference between the predicted and the observed temporal slope, normalized to the square root of the sum of their quadratic errors. The favoured model is highlighted.
Afterglow model Optical X-ray
  $\alpha_{\rm opt}$ $\sigma $-level $\alpha_{\rm X}$ $\sigma $-level
Iso
ISM, wind, $\nu_{\rm c}<\nu$ $0.46\pm0.05$ -14.54 $\rm 1.02^{+0.42}_{-0.38}$ -1.14
ISM, $\nu<\nu_{\rm c}$ $0.96\pm0.05$ -8.53 $\rm 1.52^{+0.42}_{-0.38}$ -0.01
wind, $\nu<\nu_{\rm c}$ $1.46\pm0.05$ -2.52 $\rm 2.02^{+0.42}_{-0.38}$ 1.24
Jet
ISM, wind, $\nu_{\rm c}<\nu$ $1.28\pm0.06$ -4.23 $\rm 2.02^{+0.56}_{-0.50}$ 0.96
ISM, wind, $\nu<\nu_{\rm c}$ $2.28\pm0.06$ 6.62 $\rm 3.02^{+0.56}_{-0.50}$ 2.89


Source LaTeX | All tables | In the text