Table 5: Model photospheres.
Case R $T_{\rm eff}$ log g T0a db log FLc log RLd
   $R_{\odot}$ K     K        
M = $M_{\odot }$            

a
 50 4000 1.04 2196 1.06 12.206 -2.542
a  50 3900 1.04 2185 1.08 12.193 -2.572
a  75 3800 0.69 2117 1.13 12.185 -2.609
a  75 3700 0.69 2094 1.13 12.171 -2.641
a 100 3600 0.44 2023 1.18 12.160 -2.679

b
100 3600 0.44 2074 1.18 12.159 -2.677
b 100 3500 0.44 2037 1.18 12.144 -2.711
b 150 3400 0.09 1857 1.30 12.137 -2.755
b 150 3300 0.09 1628 1.29 12.118 -2.787
b 200 3200 -0.16 1396 1.40 12.102 -2.825

b
200 3100 -0.16 1291 1.38 12.064 -2.842
b 250 3000 -0.36 1079 1.51 12.031 -2.866
b 250 2900 -0.36 1021 1.47 11.974 -2.868
b 300 2800 -0.52 895 1.58 11.931 -2.886

M =
$2~M_{\odot}$            

a
 50 4000 1.34 2251 1.04 12.200 -2.536
a  50 3900 1.34 2234 1.04 12.187 -2.566
a  75 3800 0.99 2172 1.06 12.178 -2.602
a  75 3700 0.99 2152 1.06 12.163 -2.634
a 100 3600 0.74 2089 1.08 12.152 -2.670

b
100 3600 0.74 2142 1.08 12.151 -2.668
b 100 3500 0.74 2107 1.08 12.135 -2.702
b 150 3400 0.39 2003 1.13 12.124 -2.742
b 150 3300 0.39 1884 1.12 12.104 -2.773
b 200 3200 0.14 1652 1.17 12.083 -2.806

b
200 3100 0.14 1525 1.16 12.041 -2.819
b 250 3000 -0.06 1342 1.20 11.998 -2.833
b 250 2900 -0.06 1234 1.19 11.936 -2.830
b 300 2800 -0.22 1102 1.22 11.882 -2.837
a Temperature at $\tau_0 = 10^{-6}$ where $\tau_0$ is the optical depth defined by the continuous opacity at $\lambda = 0.81~\mu$m; b $ d = r(\tau_0 = 10^{-6})/R$ is a measure of the extension of the photosphere; c FL is the flux in the L band in unit of erg cm-2 s-1 per $\Delta~\lambda = 1$ cm; d $R_{L} = F_{\rm bol}/F_{L}$ where $ F_{\rm bol}$ is the bolometric flux.


Source LaTeX | All tables | In the text