Table 2: First panel: intensity relationship between the tangential and normal field components of the eighteen first periods for B0=10 G, for weak (first column), moderate (second column), and strong helicity (third column) cases. The (P) indicates in phase and (IP) indicates inverted phase. Second panel: intensity relationship between the cylindrical components of the eighteen first periods for B0=10 G, for weak (first column), moderate (second column) and strong helicity (third column), cases.
Pi Weak Moderate Strong Weak Moderate Strong
P1 $\xi_{\parallel} \gg \xi_{\perp} \mapsto 0 \ S; \ IP $ $\xi_{\parallel} > \xi_{\perp} \ S; \ IP $ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r}\mapsto 0 $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r} $ $ \xi_{r} \leq \xi_{\phi}; \xi_{z} \mapsto 0 $
P2 $\xi_{\parallel} \gg \xi_{\perp} \mapsto 0 \ S; \ IP $ $\xi_{\parallel} > \xi_{\perp} \ S; \ IP $ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r}\mapsto 0 $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r} $ $ \xi_{r} \leq \xi_{\phi}; \xi_{z} \mapsto 0 $
P3 $\xi_{\parallel} \gg \xi_{\perp} \mapsto 0 \ S; \ IP $ $\xi_{\parallel} > \xi_{\perp} \ S; \ IP $ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r}\mapsto 0 $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r} $ $ \xi_{r} \leq \xi_{\phi}; \xi_{z} \mapsto 0 $
P4 $\xi_{\parallel} \gg \xi_{\perp} \mapsto 0 \ S; \ IP $ $\xi_{\parallel} > \xi_{\perp} \ S; \ IP $ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r}\mapsto 0 $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r} $ $ \xi_{r} \leq \xi_{\phi}; \xi_{z} \mapsto 0 $
P5 $\xi_{\parallel} \gg \xi_{\perp} \mapsto 0 \ S; \ IP $ $\xi_{\parallel} > \xi_{\perp} \ S; \ IP $ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r}\mapsto 0 $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r} $ $ \xi_{r} \leq \xi_{\phi}; \xi_{z} \mapsto 0 $
P6 $\xi_{\parallel} \gg \xi_{\perp} \mapsto 0 \ S; \ IP $ $\xi_{\parallel} > \xi_{\perp} \ S; \ IP $ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r}\mapsto 0 $ $ \xi_{z}\gg \xi_{\phi} \sim \xi_{r} $ $ \xi_{r} \leq \xi_{\phi}; \xi_{z} \mapsto 0 $
P7 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P8 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P9 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P10 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P11 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P12 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\parallel} \geq \xi_{\perp} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $ \xi_{r}> \xi_{\phi} > \xi_{z} $
P13 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P14 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\perp} \geq \xi_{\parallel} \ IP $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{z} > \xi_{r} > \xi_{\phi} $
P15 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $ \xi_{r}> \xi_{\phi} > \xi_{z} $

P16

$\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $ \xi_{r}> \xi_{\phi} > \xi_{z} $
P17 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $ \xi_{r}> \xi_{\phi} > \xi_{z} $
P18 $\xi_{\perp} \gg \xi_{\parallel} \mapsto 0 \ F; \ P $ $\xi_{\perp} > \xi_{\parallel} \ F; \ P$ $\xi_{\parallel} \geq \xi_{\perp}
\ P $ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $\xi_{r} \sim \xi_{\phi}\gg \xi_{z}\mapsto 0$ $ \xi_{r}> \xi_{\phi} > \xi_{z} $


Source LaTeX | All tables | In the text