Table 2: Neutrino mean free paths l for absorption and scattering processes in quark matter, as well as in neutron matter with n0 = 0.16 fm-3 and the neutron Fermi momentum $p_{\rm Fn} =\left (3 \pi ^2 n_{\rm n}\right )^{1/3} \simeq 330 \left (n_{\rm n}/n_0\right )^{1/3}$ MeV.
Process Mean Free Path l (Iwamoto 1981) l For $E_\nu=3.15~T, \alpha_{\rm s}=0.5$ l For T=5 MeV, $\mu _{\rm e}=10$ MeV
    [km] [m]

d + $\nu_{\rm e}~~\longrightarrow$u + e-
$\frac{1}{l_{\rm abs}^q}=\frac{4}{\pi^4}\alpha_{\rm s} G_F^2\cos^2\Theta_c p_{\r...
...u} p_{\rm F}^{{\rm e}^{-}}\left(\frac{E_\nu^2+(\pi T)^2}{1+e^{-E_\nu/T}}\right)$ $\sim$30 $\left(\frac{T}{{\rm ~MeV}}\right)^{-2}\left(\frac{\mu_{\rm q}}{\rm 400~MeV}\right)^{-2}\left(\frac{\mu_{\rm e}}{\rm ~MeV}\right)^{-1}$ $\sim$120 for $\mu _{\rm q}=400$ MeV
q + $\nu~~\longrightarrow$q + $\nu$ $l_{\rm scat}^i=\frac{20}{C_{Vi}^2+C_{Ai}^2}\frac{1}{n_i\sigma_0} \left(\frac{m_{\rm e}}{E_\nu}\right)^2\left(\frac{p_{\rm F}(i)}{E_\nu}\right)$ $\sim$40  $\left(\frac{\mu_{\rm q}}{\rm 400~MeV}\right)^{-2}\left(\frac{T}{\rm ~MeV}\right)^{-3}$ $\sim$350 for $\mu _{\rm q}=400$ MeV
n + n + $\nu_{\rm e}~~\longrightarrow$n + p + e- $l^n_{\rm abs}= \frac{45 {\rm km}}{(y^4+10\pi^2y^2+9\pi^4)}\left(\frac{T}{\rm 10~MeV}\right)^{-4}\left(\frac{n_b}{n_0}\right)^{-2/3}$ $\sim$230 $\left(\frac{T}{\rm ~MeV}\right)^{-4}\left(\frac{p_{Fn}}{\rm 330~MeV} \right)^{-2}$ $\sim$370 for $n_{\rm n}=n_0$
      $\sim$130 for $n_{\rm n} \simeq 5 n_0$
n + $\nu~~\longrightarrow$n + $\nu$ $l_{\rm scat}^n=\left(\frac{3}{32}\left(1+3g_A^2 \right)n_{\rm n} \sigma_0 \left(\frac{E_\nu}{m_{\rm e}}\right)^2\left(\frac{T}{E_F(n)}\right)\right)^{-1}$ $\sim$10 $\left(\frac{T}{\rm ~MeV}\right)^{-3}\left(\frac{p_{Fn}}{\rm 340~MeV} \right)^{-1}$ $\sim$80 for $n_{\rm n}=n_0$
      $\sim$50 for $n_{\rm n} \simeq 5 n_0$


Source LaTeX | All tables | In the text