Table 1: Stellar parameters and elemental abundances of HVS 7.
$T_{\rm eff}$ (K) $12~000\pm500$ $M/M_{\odot}$ $3.7\pm0.2$
$\log g$ (cgs) $3.8\pm0.1$ $R/R_{\odot}$ $4.0\pm0.1$
$\xi$ (km s-1) $3\pm1$ $L/L_{\odot}$ $300\pm50$
$v \sin i$ (km s-1) $55\pm2$ $\tau_{\rm evol}$ (Myr) $150\pm10$

Ion
$\varepsilon^{\rm NLTE}$ $\varepsilon^{\rm LTE}$ #Ion $\varepsilon^{\rm LTE}$ #

He I1
8.90 $\pm$ 0.11 9.17 $\pm$ 0.11 2Ca II  6.60 1
C II2 $\le$6.50 $\le$6.47 ...Sc II  4.00 1
N II3 $\le$7.50 $\le$7.60 ...Cr II  6.40 $\pm$ 0.12 10
O I4 $\le$7.70 $\le$8.20 ...Mn II  $\le$6.50 ...
Mg II5 6.00 5.80 1Co II  6.82 $\pm$ 0.21 5
Si II6 8.69 $\pm$ 0.13 8.61 $\pm$ 0.15 12Sr II  5.00 1
Si III6 8.65 8.80 1Y II  5.02 $\pm$ 0.18 5
S II7 7.35 $\pm$ 0.12 7.44 $\pm$ 0.14 2Eu II  5.05 $\pm$ 0.16 3
Ti II8 6.20 $\pm$ 0.11 5.64 $\pm$ 0.11 7Gd II  5.93 $\pm$ 0.13 4
Fe II8 8.44 $\pm$ 0.13 7.78 $\pm$ 0.16 26Dy II  6.00 $\pm$ 0.23 5
P II  ... 7.13 $\pm$ 0.21 2Dy III  4.83 $\pm$ 0.18 3
Cl II  ... 7.92 $\pm$ 0.21 5Hg II  4.90 1
$\varepsilon(X)$ =  $\log~(X/{\rm H})$ + 12. Error estimates consist of statistical 1$\sigma$-uncertainties derived from line-to-line scatter (# lines) plus 0.1 dex for continuum placement uncertainty (added in quadrature); realistic uncertainties, including systematic effects e.g. if a magnetic field were present, are expected to be larger. NLTE model atoms: 1 Przybilla (2005); 2 Nieva & Przybilla (2008,2006); 3 Przybilla & Butler (2001); 4 Przy-billa et al. (2000); 5 Przybilla et al. (2001); 6 Becker & Butler (1990), extended and updated; 7 Vrancken et al. (1996), updated; 8 Becker (1998).


Source LaTeX | All tables | In the text