Table 2: Equilibrium geometry (in $\AA$), dipole moment ($\mu $, in Debyes), rotational constants ($B_{\rm e}$, $D_{\rm e}$ and B0 in MHz), harmonic wavenumbers ( $\omega _{i}$, in cm-1), and intensities (I, in Debyes2/ $\AA^{2}$ amu) of $\textit {l}$-CSiCC.
    RCCSD(T) UCCSD(T) CASSCF CASSCF CASSCF
    cc-pVTZa cc-pVTZa cc-pVDZb cc-pVTZa cc-pVQZa  
R1 (C-SiCC str) 1.8330 1.8320 1.8096 1.7931 1.7886
R2 (CSi-CC str) 1.6898 1.6911 1.6897 1.6676 1.6640
R3 (CSiC-C str) 1.2886 1.2891 1.2868 1.2814 1.2789
$\mu $         1.7700 1.8326
$B_{\rm e}$   3101.54 3099.96 3129.07 3191.06 3205.37
B0       3162.50    
$D_{\rm e}$ $\times$ 10-6       353.484    
$\omega_1 (\sigma)$ (C-C-C stretching) 1890 1886 1961.2 1940 1941 (I=900)
$\omega_2 (\sigma)$ (Si-C stretching) 915 909 934.8 976 979 (I=32)
$\omega_3 (\sigma)$ (C-C-C stretching) 619 619 604.5 655 660 (I=2)
$\omega_4 (\pi)$ (trans-bending) i118 i127 211.5 166 164 (I=47)
$\omega_5 (\pi)$ (cis-bending) 28 27 91.6 91 86 (I=0)
a This work. Values obtained using standard approaches implemented in MOLPRO. Refs. (Rauhut et al. 1999; Eckert et al. 1997); b This work. Values derived from our 6D PES; c Ref. (Rintelman et al. 2001).

Source LaTeX | All tables | In the text