Table 2: Typical dust volume composition $V_{\rm s}/V_{\rm tot}$, mass composition $M_{\rm s}/M_{\rm tot}$, and mean particles sizes $\langle a\rangle~[\mu$m] as a function of local temperature for models as depicted in Fig. 2. ($\nearrow $) - increasing in T-interval; ($\searrow $) - decreasing in T-interval.

T
$V_{\rm s}/V_{\rm tot}$ $M_{\rm s}/M_{\rm tot}$ $\langle a\rangle$
$\rm [K]$     $\rm [\mu$m]

700
24% MgSiO3, 20% Mg2SiO4 1. MgSiO3 10-3
. 12% SiO2, 10% SiO, 9% FeS 2. Mg2SiO4 .
. {MgO, FeO, Fe2O3} <9% 3. FeS, Fe2O3, FeO .
. {Fe, Al2O3}<5% 4. SiO2, MgO, Fe .
950 {TiO2, CaTiO3} <1% 5. SiO 10-2
950   10-2
. strongly changing .
1200   10-0.5
1200 35% Mg2SiO4, 23% SiO2 1. Fe 10-0.5
. <20% MgSiO3 ($\searrow $) 2. Mg2SiO4 .
. 15% Fe, 5% MgO 3. SiO2/MgSiO3 .
1700 everything else <5% 4. MgO 10
1700   10
. strongly changing .
1900 (SiO, MgO peaking but low %) 102
1900 72% Fe ($\searrow $) 1. Fe 102
. 20% Al2O3 ($\nearrow $), <5% TiO2 2. Al2O3 ($\nearrow $) $(\star)$
2100 10% CaTiO3 (at 2100 K) 3. CaTiO3 0
$(\star)$ Mean grain sizes $\langle a\rangle$ can reach up to 103.5 in lower gravity
atmospheres like giant-gas planets (compare Fig. 4).

Source LaTeX | All tables | In the text