Table 1: Models of the nova spatial distribution in the Galaxy used for the Monte Carlo simulations (Jean et al. 2000).
Model 1 (Kent et al. 1991):
$\rho_{\rm h}$ = 3.0 kpc and $z_{\rm h}$ = 0.170 kpc. K0 is the modified Bessel function
Disc $n(z,\rho)$ = $n_{\rm d} \exp \Big( -\frac{\vert z\vert}{z_{\rm h}} - \frac{\rho}{\rho_{\rm h}} \Big)$  
Bulge n(R) = $n_{\rm s} 1.04 \times 10^{6} \Big( \frac{R}{0.482} \Big)^{-1.85}$ $R \leq 0.938$ kpc
  = $n_{\rm s} 3.53 K_{0} \Big( \frac{R}{0.667} \Big)$ $R \geq 0.938$
  = 0 $R \geq 5$ kpc
Model 2 (King et al. 1990):
$\rho_{\rm h}$ = 5.0 kpc and $z_{\rm h}$ = 0.30 kpc
Disc $n(z,\rho)$ = $n_{\rm d} \exp \Big( -\frac{\vert z\vert}{z_{\rm h}} - \frac{\rho}{\rho_{\rm h}} \Big)$  
Bulge n(R) = $n_{\rm s} 1.25 \Big( \frac{R}{R_{\rm g}} \Big)^{-6/8} \exp \Big[ -10.093 \Big( \frac{R}{R_{\rm g}} \Big)^{1/4} + 10.093 \Big]$ $R \leq R_{\rm g}$
  $= n_{\rm s} \Big( \frac{R}{R_{\rm g}} \Big)^{-7/8} \Bigg[ 1-\frac{0.0867}{ \big...
... \Bigg] \exp \Big[ -10.093 \Big( \frac{R}{R_{\rm g}} \Big)^{1/4} + 10.093 \Big]$ $R \geq R_{\rm g}$
Model 3 (Dawson & Johnson 1994):
$\rho_{\rm h}$ = 5.0 kpc and $z_{\rm h}$ = 0.35 kpc
Disc $n(z,\rho)$ = $n_{\rm d} \exp \Big( -\frac{\vert z\vert}{z_{\rm h}} - \frac{\rho}{\rho_{\rm h}} \Big)$  
Bulge n(R) = $\frac{n_{\rm s}}{R^{3}+0.343}$ $R \leq 3$ kpc
  = 0 $R \geq 3$ kpc
R is the distance from the Galactic Centre, z is the distance perpendicular to the Galactic plane and $\rho$ is the galactocentric planar distance. The distance from the Galactic Centre to the Sun is $R_{\rm g} = 8$ kpc, $n_{\rm s}$ and $n_{\rm d}$ are the normalisation factors for the bulge and the disc respectively (in kpc-3). The proportions of novae in the bulge are 0.179 (Model 1), 0.105 (Model 2) and 0.111 (Model 3).

Source LaTeX | All tables | In the text