A&A 481, L21-L24 (2008)
DOI: 10.1051/0004-6361:20079115
Science with Hinode
LETTER TO THE EDITOR
A. Sainz Dalda1,2 - L. R. Bellot Rubio3
1 - THEMIS S.L., C/Vía Láctea s/n, 38200 La Laguna,
Tenerife, Spain
2 -
Instituto de Astrofísica de Canarias, C/Vía Láctea s/n,
38200 La Laguna, Tenerife, Spain
3 - Instituto de Astrofísica de Andalucía, CSIC, Apdo. 3004,
18080 Granada, Spain
Received 21 November 2007 / Accepted 19 December 2007
Abstract
Aims. We investigate the spatial distribution of magnetic polarities in the penumbra of a spot observed very close to disk center.
Methods. High angular and temporal resolution magnetograms taken with the Narrowband Filter Imager aboard Hinode are used in this study. They provide continuous and stable measurements in the photospheric Fe I 630.25 line for long periods of time.
Results. Our observations show small-scale, elongated, bipolar magnetic structures that appear in the mid penumbra and move radially outward. They occur in between the more vertical fields of the penumbra, and can be associated with the horizontal fields that harbor the Evershed flow. Many of them cross the outer penumbral boundary, becoming moving magnetic features in the sunspot moat. We determine the properties of these structures, including their sizes, proper motions, footpoint separation, and lifetimes.
Conclusions. The bipolar patches can be interpreted as being produced by sea-serpent field lines that originate in the mid penumbra and eventually leave the spot in the form moving magnetic features. The existence of such field lines has been inferred from Stokes inversions of spectropolarimetric measurements at lower angular resolution, but this is the first time they are imaged directly. Our observations add another piece of evidence in favor of the uncombed structure of penumbral magnetic fields.
Key words: sunspots - Sun: magnetic fields - Sun: photosphere - magnetohydrodynamics (MHD) - plasmas
Significant progress in the understanding of the penumbra has been made through high resolution magnetograms and Dopplergrams (Title et al. 1993; Schlichenmaier & Schmidt 2000; Langhans et al. 2005; Rimmele & Marino 2006), spectropolarimetric measurements (Degenhardt & Wiehr 1991; Sánchez Almeida & Lites 1992; Lites et al. 1993; Stanchfield et al. 1997; Rüedi et al. 1999; Westendorp Plaza et al. 2001; Schlichenmaier & Collados 2002; Mathew et al. 2003; Bellot Rubio et al. 2004; Borrero et al. 2005, 2006; Sánchez Cuberes et al. 2005; Beck 2006; Jurcák et al. 2007), and forward modeling (Martínez Pillet 2000; Müller et al. 2002). Today it is agreed that the penumbra consists of magnetic fields having different inclinations and strengths, as proposed by Solanki & Montavon (1993) in their uncombed penumbral model. One particularly relevant result derived from spectropolarimetry is that some field lines return to the solar interior well within the penumbra. The modest angular resolution of ground-based polarimeters has precluded an unambiguous direct detection of such opposite-polarity field lines or the study of their temporal evolution.
Also, in recent years there has been an increased interest in determining the relation between moving magnetic features (MMFs; Harvey & Harvey 1973) and penumbral magnetic fields. There is growing observational evidence that bipolar MMFs are the continuation of the more horizontal magnetic fields of the penumbra in the sunspot moat (Sainz Dalda & Martínez Pillet 2005; Ravindra 2006; Cabrera Solana et al. 2006; Kubo et al. 2007a), but a clear picture has not yet emerged due to insufficient angular resolution.
Establishing the small-scale organization of the magnetic field in the penumbra is crucial to shed light on these issues, and also to distinguish between competing models of the penumbra. Here we investigate the distribution of magnetic polarities in and around sunspots using magnetograph observations taken with Hinode (Kosugi et al. 2007). The unprecedented resolution and stability of these measurements allow us to follow the evolution of the penumbral fine structure in polarized light for hours.
Our study is based on longitudinal magnetograms acquired with the
Narrowband Filter Imager (NFI; Tarbell et al. 2008) aboard Hinode.
On November 14, 2006, the NFI observed the isolated spot AR 10923 from
07:10 to 09:40 UT and from 11:00 to 17:10 UT. The instrument was
tuned to measure the Stokes I and V signals of Fe I 630.25 nm at -120 mÅ from line center. The magnetograms cover
a field of view (FOV) of
,
and have an
irregular cadence of 1-5 min. The effective pixel size of the
measurements is 0
16, which gives a spatial resolution of about
0
32. The spectral resolution of the NFI is 90 mÅ. The
spot crossed the central meridian around 10 UT, reaching a minimum
heliocentric angle of 6
.
The data have not been corrected for instrumental effects because of difficulties in constructing accurate flatfields. We therefore restrict our analysis to the polarity of the magnetic field. The polarity should be insensitive to spatial variations in the instrument transmission because it is obtained as the difference of two intensity measurements.
Single wavelength magnetograms, such as the ones used here, may fail to retrieve the polarity of the field in the presence of large Doppler shifts or multilobed Stokes V spectra. These profiles are common in sunspot penumbrae because of their strong Evershed flows (e.g., Schlichenmaier & Collados 2002; Bellot Rubio et al. 2007). However, in sunspots close to disk center the horizontal Evershed flow does not significantly shift the Stokes V spectra. Only near the outer edge of the spot, where field lines are thought to return to the surface, may the flow produce redshifts in both the center-side and the limb-side penumbra. Our measurements were taken in the blue wing of Fe I 630.25 nm, so Doppler shifts to the red cannot change the sign of the magnetogram signal. In addition, the small heliocentric angle of the spot means that projection effects are negligible. For these reasons, negative polarities in the magnetograms truly correspond to field lines pointing to the solar surface, whereas positive polarities indicate fields directed away from the sun.
The magnetograms have been aligned by cross-correlation to create a
movie for the 07:10-17:10 UT period with a gap between 09:40 and
11:00 UT (AR10923.mpg, available as Supplementary Material).
This presentation of the data makes it easier to follow the temporal
evolution of the polarization signals in the penumbra. The movie
covers a FOV of
,
and has a regular
cadence of 5 min.
A careful inspection of the magnetograms reveals that most of the negative-polarity patches are associated with positive-polarity structures located next to them but farther from the umbra. When detected, the positive-polarity patch has a stronger magnetogram signal than the background (which is also positive). Usually, the two patches appear elongated and narrow. The magnetogram movie shows that these opposite-polarity pairs move radially outward as a single entity.
The bottom panels of Fig. 1 give examples of bipolar penumbral structures. We have included contours of the umbra and the penumbra (obtained from the intensity images) to help identify the radial distances at which they are seen. Figure 1 illustrates the following properties of these structures:
The time-slice diagrams show that the positive and negative patches
often cross the outer penumbral boundary (represented by the dotted
lines). In the case of filaments #1 and #9, the two patches travel a
distance of some 3-6
in the moat. The crossing of the
penumbral edge does not modify the speed of these features, but they
adopt a more roundish shape outside the spot.
The magnetogram movie demonstrates that, at any given time, up to 15-20 bipolar structures may coexist in the penumbra. They are observed all around the umbra, with no preferred direction. Their lifetime can be as short as 30 min or longer than 7 h. Usually, the former are very weak and do not reach the outer penumbral boundary.
We suggest that the opposite-polarity patches are the manifestation of
-loop perturbations of the field lines driving the Evershed
flow. The negative-polarity patch, the one closer to the umbra,
contains field lines returning to the solar surface, while the leading
positive-polarity patch represents the re-emergence of the same field
lines. The fact that the magnetogram signal is stronger in the
positive-polarity patch compared with its surroundings indicates more
vertical fields than both the spines and intra-spines, consistent with
the idea that it represents the upstream footpoint of a
-loop.
There have been reports of negative-polarity field lines from MDI
magnetograms (Sainz Dalda & Martínez Pillet 2005; Ravindra
2006), SST magnetograms (Langhans et al. 2005), and Hinode
measurements (Ichimoto et al. 2007; Bellot Rubio et al. 2007), but
this is the first time they are (a) observed in the center-side
penumbra; (b) associated with positive-polarity counterparts that move
together toward the edge of the spot; and (c) identified as the
footpoints of sea-serpent field lines. Very likely, these structures
are the ones producing the Evershed clouds discovered by Shine et al. (1994) and analyzed in detail by Cabrera Solana et al. (2007, 2008). The
scenario favored by the present observations is similar to that
resulting from the moving tube simulations of Schlichenmaier (2002).
In the simulations, penumbral field lines associated with strong
Evershed flows develop sea-serpent shapes during their rise from
the spot magnetopause.
![]() |
Figure 3: Sketch of the penumbra showing sea-serpent field lines in between more vertical spine fields. The ovals indicate the polarity of the different structures when observed at disk center. |
Our measurements show with unprecedented clarity that most of the
opposite-polarity patches reach the edge of the spot and enter the
moat. The transition is smooth, with no changes in the propagation
speed. In other words, these structures are the precursors of the bipolar
moving magnetic features observed around sunspots, confirming the
results of Zhang et al. (2003), Sainz Dalda & Martínez Pillet
(2005), Cabrera Solana et al. (2006), and Kubo et al. (2007a,b). MMFs are the continuation of the penumbral fields that harbor
the Evershed flow, as suggested theoretically by Schlichenmaier
(2002), Thomas et al. (2002), and others. Their magnetic configuration
must be that of a -loop, since this is the shape of the field lines
in the bipolar structures while they still reside in the penumbra.
Zhang et al. (2007) and Cabrera Solana (2007) have deduced a similar
configuration for bipolar MMFs.
Our interpretation of the observations is summarized in Fig. 3. We draw the inclined fields of the penumbra as sea serpents flanked by more vertical field lines representing the penumbral spines. The sea serpents propagate across the penumbra and reach the moat, where they become bipolar MMFs.
This magnetic configuration is in good agreement with the moving tube model of Schlichenmaier et al. (1998), which is essentially a siphon flow (Meyer & Schmidt 1968; Degenhardt 1989, 1991) with supercritical velocities. It remains to be seen whether subcritical and/or critical siphon flows (Thomas & Montesinos 1993; Montesinos & Thomas 1997), as well as other models of the penumbra, such as the turbulent pumping model (Thomas et al. 2002), the gappy penumbral model (Spruit & Scharmer 2006; Scharmer & Spruit 2006), or 3D simulations of sunspot penumbrae (e.g., Heinemann et al. 2007), can also explain the observations. In any event, it is clear that the detailed topology of these field lines must be inferred from spectropolarimetric data, necessarily at the same or better resolution than that provided by Hinode.
Acknowledgements
We thank all the scientists involved in the operation of Hinode as Chief Observers for their continuous support. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). This work has been partially funded by the Spanish MEC through projects ESP2006-13030-C06-01, ESP2006-13030-C06-02, AYA2004-05792, and AYA2007-66502.
AR10923.mpg