Table 2: Velocity-integrated intensities (in K km s-1), upper state column densities in cm-2 calculated using Eq. (2) and critical densites in cm-3 for the detected multiple-transitions ``parent'' molecules used in the excitation analysis. In a few cases, extra integrated-intensity values (listed in italics) as found in literature are added to perform the excitation analysis. Literature references are given in the footnote.
    SiO(5-4) SiO(6-5) SiO(7-6) SiO(8-7) HCN(3-2) HCN(4-3) CS(5-4) CS(6-5) CS(7-6)
  $\int
T_{\rm mb}~{\rm d}v$ 9.2 11.1 10.4   9.9 8.9 2.4 [0.8] $^{\dagger}$ 1.3
[0pt]WX Psc $N_{\rm u}$ $7.96 \times 10^{12}$ $7.91 \times 10^{12}$ $5.15 \times 10^{12}$   $7.96 \times 10^{12}$ $4.22 \times
10^{12}$ $ 2.53 \times 10^{12}$ $1.08 \times 10^{12}$ $1.41
\times 10^{12}$
  $\int
T_{\rm mb}~{\rm d}v$ 7.1 8.9 5.2   21.7 12.2 8.5a 2.3 4.6
[0pt]W Aql $N_{\rm u}$ $6.19 \times 10^{12}$ $6.36 \times 10^{12}$ $2.57 \times 10^{12}$   $1.74 \times 10^{13}$ $5.81 \times 10^{12}$ $8.95 \times
10^{12}$ $3.03 \times 10^{12}$ $5.00 \times 10^{12}$
  $\int
T_{\rm mb}~{\rm d}v$     19.62 20.4b 139.76c 60.69 32.34c 20.37 35.24
[0pt]II Lup $N_{\rm u}$     $6.96 \times 10^{12}$ $8.74 \times 10^{12}$ $1.24 \times 10^{14}$ $2.88 \times 10^{13}$ $6.85 \times 10^{13}$ $2.61 \times 10^{13}$ $3.83 \times
10^{13}$
  $\int
T_{\rm mb}~{\rm d}v$ 3.8 5.1   8.4d 25.7 31.9d 7.4    
[0pt]V Cyg $N_{\rm u}$ $3.33 \times 10^{12}$ $3.51
\times 10^{12}$   $5.28 \times 10^{12}$ $2.06 \times 10^{13}$ $1.51 \times 10^{13}$ $1.41 \times 10^{13}$    
at 40 K $n_{{\rm crit}}$ $3.06 \times 10^{6}$ $5.26 \times 10^{6}$ $8.41
\times 10^{6}$ $1.27 \times 10^{7}$ $5.83 \times 10^{6}$ $1.32
\times 10^{7}$ $1.85 \times 10^{6}$ $3.22 \times 10^{6}$ $5.09
\times 10^{6}$
at 100 K $n_{{\rm crit}}$ $2.00 \times 10^{6}$ $3.44 \times 10^{6}$ $5.57
\times 10^{6}$ $8.18 \times 10^{6}$ $4.22 \times 10^{6}$ $9.63
\times 10^{6}$ $1.35 \times 10^{6}$ $2.37 \times 10^{6}$ $3.76
\times 10^{6}$
at 300 K $n_{{\rm crit}}$ $1.22 \times 10^{6}$ $2.10 \times 10^{6}$ $3.44 \times 10^{6}$ $5.12 \times 10^{6}$ $2.35 \times 10^{6}$ $5.65
\times 10^{6}$ $8.35 \times 10^{5}$ $1.48 \times 10^{6}$ $2.37 \times 10^{6}$
a Bujarrabal et al. (1994); b Schöier et al. (2006a); cWoods et al. (2003); d Bieging et al. (2000).
$^{\dagger}$ Line detected however with small S/N so that the integrated intensity is quite uncertain.


Source LaTeX | All tables | In the text