Table 1: Constraints on model parametersa.
Parameter Constraints
E(B-V) H$\alpha $/H$\beta$; (No freedom: E(B-V) = 0.04)
$R_{\rm i}$ No freedom $R_{\rm i}$ = 2.85 $\times $ 1020 cm
$f^{\rm cov}$ Absolute I(H$\beta$) = 5.6 $\times $ 10-14 erg cm-2 s-1
L1, L2 Cluster SED; $f^{\rm cov} \leq 1.0$; $Q_{\rm abs}$/Q $\sim$ 0.37
T1, T2 $\delta_4 \leq 1.0$; (log ( $Q_{\rm He}$/Q) $\sim$ -0.5)
$\delta _4$ He II${\lambda }$ 4686
He He/H = 0.08; He I${\lambda }$ 5876?
C C III]${\lambda }$ 1909
N [N II]${\lambda }$ 6584
O [O III]${\lambda }$ 5007
Ne [Ne III]${\lambda }$ 3869
Mg Mg/Ar = 10.; Mg I]${\lambda }$ 4571?
Al Al/Ar = 1.; Al III${\lambda }$ 1855?
Si Si/Ar = 10.; Si III]${\lambda }$ 1883?
S S/Ar = 4.37; $\langle$[S III]$\rangle$?
Ar [Ar III]${\lambda }$ 7135
Fe [Fe III]${\lambda }$ 4658
One-component constant density run (N0, N1):
$N_{\rm H} $ r([S II]) = [S II]${\lambda }$ 6716/[S II]${\lambda }$ 6731 ($\pm$)
$\tau_{\rm m}$ [O II]${\lambda }$ 3727
$\epsilon $ $R_{\rm f}$ = 4.75 $\times $ 1020 cm
One-component model with Eq. (1) (M1):
$\epsilon = 1.0$ No freedom
$P_{\rm out}$ r([S II])
$\tau_{\rm c}$ [O II]${\lambda }$ 3727
$P_{\rm in}$ $R_{\rm f}$ = 4.75 $\times $ 1020 cm
Two-component model ( M2, M3, M4) added freedoms:
$f^{\rm cov}_1$ $f^{\rm cov}_2$ > 0; $f^{\rm cov}$ = $f^{\rm cov}_1$ + $f^{\rm cov}_2$ < 1
$f^{\rm cov}_2$ $\tau_{\rm m}$(2) < $\tau_{\rm c}$; global 3D geometry
$\tau_{\rm m}$(2) Fine tuning I(H$\beta$) for given $f^{\rm cov}_i$

a Question marks attached to dismissed constraints (see text).


Source LaTeX | All tables | In the text