Table 4: Period fit for the optimal model. We list the mode identification of the observed periods together with the theoretical periods, the stability coefficient $\sigma _I$, the kinetic energy $\log{E}$ and the rotation coefficient Ckl. Also indicated are the relative dispersion of the period fit and the amplitude rank of the observed periodicity.
    $P_{\rm obs}$ $P_{\rm th}$ $\sigma _I$ log E Ckl $\Delta P/P$ Comments
l k (s) (s) (rad/s) (erg)   (%)  
0 3 ... 112.010 $-1.070\times
10^{-5}$ 40.781 ... ...  
0 2 ... 128.259 $-1.233\times
10^{-5}$ 40.751 ... ...  
0 1 155.767 155.053 $-1.048\times
10^{-6}$ 41.651 ... +0.4585 $\sharp$1
0 0 165.687 164.995 $-7.363\times
10^{-7}$ 41.741 ... +0.4175 $\sharp$2
1 4 ... 108.498 $-1.404\times
10^{-5}$ 40.632 0.01728 ...  
1 3 ... 127.004 $-1.357\times
10^{-5}$ 40.710 0.01367 ...  
1 2 149.027 149.644 $-9.475\times
10^{-7}$ 41.720 0.03214 -0.4140 $\sharp$7
1 1 ... 163.618 $-1.080\times
10^{-6}$ 41.588 0.01923 ...  
2 4 ... 103.956 $-2.518\times
10^{-5}$ 40.323 0.02767 ...  
2 3 ... 124.148 $-1.408\times
10^{-5}$ 40.690 0.03422 ...  
2 2 ... 138.108 $-2.249\times
10^{-6}$ 41.409 0.08731 ...  
2 1 161.554 161.986 $-1.390\times
10^{-6}$ 41.487 0.02621 -0.2673 $\sharp$3
2 0 192.551 192.519 $-8.212\times
10^{-10}$ 44.354 0.36050 +0.0168 $\sharp$4
3 4 ... 100.866 $-3.466\times
10^{-5}$ 40.130 0.02603 ...  
3 3 ... 118.293 $-1.096\times
10^{-5}$ 40.785 0.07479 ...  
3 2 ... 130.678 $-7.973\times
10^{-6}$ 40.913 0.05462 ...  
3 1 ... 160.138 $-1.538\times
10^{-6}$ 41.445 0.04046 ...  
3 0 ... 174.449 $-3.289\times
10^{-8}$ 42.952 0.17867 ...  
4 3 ... 112.770 $-1.088\times
10^{-5}$ 40.767 0.06969 ...  
4 2 ... 128.086 $-1.149\times
10^{-5}$ 40.764 0.03321 ...  
4 1 157.581 157.851 $-1.542\times
10^{-6}$ 41.444 0.05935 -0.1715 $\sharp$5
4 0 168.784 168.916 $-1.644\times
10^{-7}$ 42.302 0.11349 -0.0780 $\sharp$6
4 1 ... 238.583 $-3.504\times10^{-12}$ 46.073 -0.01391 ...  


Source LaTeX | All tables | In the text