Table 1: Stellar properties of Cha H$\alpha $ objects.
  Luhman (2004)
        Burrows et al. (1997) Baraffe et al. (1998)

Object

Sp. type $T_{{\rm eff}}$ (K) $\log(L/L_\odot)$ Age Mass Age Mass
    (K)   (Myr) ($M_\odot$) (Myr) ($M_\odot$)
Cha H$\alpha $ 2 M 5.25 3091 -0.92 <3 0.2 <2 >0.1
Cha H$\alpha $ 3 M 5.5 3058 -1.11 <3 0.1<M<0.2 <2 >0.1
Cha H$\alpha $ 4 M 5.5 3058 -1.17 3<a<10 0.1<M<0.2 2 0.1<M<0.2
Cha H$\alpha $ 5 M 5.5 3058 -1.00 <3 0.1<M<0.2 <2 >0.1
Cha H$\alpha $ 6 M 5.75 3024 -1.13 3<a<10 0.1<M<0.2 <2 >0.1
Cha H$\alpha $ 8 M 5.75 3024 -1.35 3<a<10 0.1<M<0.2 2<a<5 >0.1
  Comerón et al. (2000)
        Burrows et al. (1997) Baraffe et al. (1998)
Object Sp. Type $T_{{\rm eff}}$ $\log(L/L_\odot)$ Age Mass Age Mass
    (K)   (Myr) ($M_\odot$) (Myr) ($M_\odot$)
Cha H$\alpha $ 2 M 6.5 2910 -1.47 4.5 0.08 2 0.07
Cha H$\alpha $ 3 M 7 2840 -1.46 2 0.07 <2 0.06
Cha H$\alpha $ 4 M 6 2980 -1.25 3.5 0.11 2 0.1
Cha H$\alpha $ 5 M 6 2980 -1.31 3.5 0.11 2 0.1
Cha H$\alpha $ 6 M 7 2840 -1.57 4 0.07 <2 0.05
Cha H$\alpha $ 8 M 6.5 2910 -1.65 5.5 0.08 3 0.07
  Comerón et al. (1999)
        Burrows et al. (1997) D'Antona & Mazzitelli (1997)
Object Sp. type $T_{{\rm eff}}$ (K) $\log(L(L_\odot))$ age (Myr) mass ($M_\odot$) age (Myr) mass ($M_\odot$)
Cha H$\alpha $ 2 M 6 2831 -1.16 0.4 0.08 1 0.10
Cha H$\alpha $ 3 M 6 2824 -1.27 0.5 0.075 1.5 0.09
Cha H$\alpha $ 4 M 6.5 2781 -1.31 0.5 0.065 1 0.08
Cha H$\alpha $ 5 M 6 2816 -1.06 0.4 0.09 0.5 0.10
Cha H$\alpha $ 6 M6 2815 -1.57 2 0.06 3 0.08
Cha H$\alpha $ 8 - - - - - - -


Source LaTeX | All tables | In the text