Table 5: Catalog of derived parameters for LCGs.
    Stellar massa   SFR($\rho$)   Rest frame B        
Our ID z ${\rm Log}_{10}(M/M_{\odot})$ $L_{\rm IR}(10^{10}~L_{\odot})$ ( $M_{\odot}~{\rm yr}^{-1}$) HRb B/T $\chi^{2}_{\rm red}$ Typec Qd $R_{\rm d}({\rm kpc})^{e}$ M1/M2f
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
904260 0.983 10.32 <10.37 3.62 < $\rho$ < 17   - - S 3   M2
904604 0.990 10.94 <10.59 0.13 < $\rho$ < 18   0.33 $\pm$ 0.01 1.063 S 1 2.53 $\pm$ 0.04  
904680 0.964 10.28 <9.83 3.28 < $\rho$ < 16   - -   4   M2
905632 0.976 10.23 <10.18 0.87 < $\rho$ < 17   0.33 $\pm$ 0.03 1.093 S 1 1.16 $\pm$ 0.02  
905983 0.860 10.36 <7.22 3.87 < $\rho$ < 12   0.08 $\pm$ 0.02 1.129 S 2 1.85 $\pm$ 0.01  
 906961g 0.566 10.81 70.36 < 120 -0.55 $\pm$ 0.03 - - E -    
907047 1.112 10.65 <14.49 3.32 < $\rho$ < 24   - -   4   M1
907361 0.731 10.96 <6.69 0.18 < $\rho$ < 11   0.80 $\pm$ 0.04 1.322 E 2    
907794 1.144 10.92 20.82 35   0.67 $\pm$ 0.09 1.099 S0 1    
908243 0.726 10.23 <6.57 2.41 < $\rho$ < 11   0.13 $\pm$ 0.00 1.195 Tad 3    
909015 1.039 10.25 <12.07 0.29 < $\rho$ < 20   - -   4    
909093 0.968 9.71 <9.97 3.37 < $\rho$ < 17   0.65 $\pm$ 0.02 1.093 Tad 3    
909429 0.737 10.32 <6.81 4.48 < $\rho$ < 11   - -   4   M2
910413 0.655 10.67 15.84 27   - - Tad 4   M2
911747 0.840 10.18 <6.79 4.81 < $\rho$ < 11   - -   4   M2
911780 0.664 10.38 <5.29 3.69 < $\rho$ < 9   0.26 $\pm$ 0.00 1.295 S 2 2.34 $\pm$ 0.01  
911843 0.973 9.75 <10.09 5.50 < $\rho$ < 17   - -   4   M2
912744 0.690 10.40 <5.81 2.31 < $\rho$ < 9   - - S 3    
913482 0.664 10.71 27.17 < 46 0.52 $\pm$ 0.06 0.48 $\pm$ 0.00 1.221 S0 3    
914038 0.667 10.50 12.00 20   - -   4   M2
915400 0.764 10.42 <7.44 1.73 < $\rho$ < 12   0.08 $\pm$ 0.01 1.333 S 2 2.45 $\pm$ 0.02  
916137 0.980 10.33 <10.29 1.40 < $\rho$ < 17   0.60 $\pm$ 0.02 1.094 Irr 3    
916446 0.839 10.10 <6.77 1.75 < $\rho$ < 11   - -   4   M2
916866 0.987 10.22 <10.48 1.68 < $\rho$ < 17   0.42 $\pm$ 0.03 1.137 S0 2    
918147 1.099 10.77 39.48 67   - -   4   M1
919573 0.665 10.61 5.89 < 10 -0.40 $\pm$ 0.03 0.61 $\pm$ 0.05 1.172 S0 3    
919595 0.785 10.24 <7.95 2.43 < $\rho$ < 13   0.12 $\pm$ 0.00 1.182 S 3    
920435 1.034 9.44 <11.91 2.66 < $\rho$ < 20   0.49 $\pm$ 0.01 1.116 S0 2    
921406 1.095 10.37 <13.89 5.22 < $\rho$ < 23   0.31 $\pm$ 0.03 1.125 S 1 2.43 $\pm$ 0.03  
922675 0.666 10.13 <5.32 2.79 < $\rho$ < 9   0.47 $\pm$ 0.01 1.142 S0 1    
922733 0.650 10.05 <5.01 2.24 < $\rho$ < 8   - -   4   M2
922761 0.961 9.71 <9.77 2.56 < $\rho$ < 16   0.24 $\pm$ 0.01 1.095 Irr 3    
923085 1.122 10.68 15.74 26   0.87 $\pm$ 0.01 1.212 Irr 3    
923926 1.012 10.74 <11.23 1.17 < $\rho$ < 19 0.12 $\pm$ 0.07 0.64 $\pm$ 0.02 1.113 S0 3    
924881 0.839 9.80 <6.77 2.95 < $\rho$ < 11   0.78 $\pm$ 0.01 1.277 E 2    
926109 0.522 10.19 <2.95 1.55 < $\rho$ < 5   - -   4   M1
926217 0.767 10.27 <7.50 1.84 < $\rho$ < 12   0.50 $\pm$ 0.05 1.119 S0 1    
907305 1.185 10.11 <17.21 3.17 < $\rho$ < 29   - -   4   M1
914895 0.736 10.09 <6.78 2.36 < $\rho$ < 11   - -   4   M1
a Derived using a diet Salpeter IMF. In order to derive values using a classic Salpeter IMF, add 0.15 dex to the values listed here.
b X-ray hardness ratio, defined as (H-S)/(H+S) where H and S are the counts in the hard and soft bands respectively.
c Galaxy type - E: 0.8 $<B/T\leq$ 1; S0: 0.4 $<B/T\leq$ 0.8; S: 0.0 $<B/T\leq$ 0.4; Irr: irregular; Tad: Tadpole.
d Q quality factor - 1: secure; 2: possibly secure; 3: insecure; 4: fit failed.
e Exponential disk scale length(kpc) for disk dominated galaxies.
f Merging? - M1: obvious merging; M2: possible merging.
g This object could not be fitted properly due to the presence of a strong point source at the center.

Source LaTeX | All tables | In the text