Table 1: H2O Observations and abundance limits.
Source Coordinates $T_{\rm sys}$ $t_{\rm int}$ rmsa $\Delta V({\rm CO})$ $I({\rm H_2O})$b D $M_{\rm H_2}$c $x(o{\rm -H_2 O})$d CO Reference
  (J2000) (K) (hr) (mK) (km s-1) (K km s-1) (Mpc) (109 $M_\odot$)    
NGC 253 00:47:35.2 -25:17:20 4100 18.5 13 450 1.6 2.5 0.60 < $2.0\times 10^{-9}$ Sorai et al. (2000)
IC 342 03:46:49.6 +68:05:45 3700 25.0 10 130 0.56 3.9 0.39 < $2.6\times 10^{-9}$ Helfer et al. (2003)
M 82 09:55:54.0 +69:40:57 3400 20.1 10 400 1.9 3.9 1.56 < $1.7\times 10^{-9}$ Walter et al. (2002)
N4258 12:18:57.5 +47:18:14 4300 17.4 13 450 1.4 8.1 0.81 < $1.3\times 10^{-8}$ Helfer et al. (2003)
CenA 13:25:27.6 -43:01:08 4500 17.2 10 600 1.2 4.0 0.29 < $7.8\times 10^{-9}$ Eckart et al. (1990)
M 51 13:29:53.1 +47:11:48 3900 23.7   8 200 0.56 7.7 1.64 < $2.4\times 10^{-9}$ Helfer et al. (2003)
a Rms noise at a resolution of 2.7 km s-1. b Three sigma upper limit integrated over $\Delta V({\rm CO}$); values for M 82 and NGC 253 include scaling by 1.61 and 1.15, respectively, to account for pointing errors; see text. c Assumes $X_{\rm CO} = 2$ $\times$ 1020 H2 cm-2 (K km s-1)-1. d Three sigma upper limit assuming $n_{\rm H_2} = 10^6$ cm-3 and TK = 40 K. Depending on the average density of the molecular gas on large scales and the mass fraction in dense cores, these abundance limits could be larger by a factor of $\sim $10or more (see text).

Source LaTeX | All tables | In the text