Table 3: Summary of best-fit model.
      "Cold'' "Warm''  
Parameter Symbol Unit     Remark
  in text        
Apparent (Lensed) properties:        
Lens magnification m - $60\!-\!110$ $\sim $100 model from Egami etal. (2000)
Effective magnified radius r0 pc 995 575  
CO Luminosity $m~L^\prime_{\rm CO(1-0)}$ K kms-1 pc2 $7.4\times 10^{10}$ $3.0\times 10^{10}$  
FIR luminosity $m~L_{\rm FIR}$ ${L}_{\odot}$ $2\times 10^{13}$ $1.7\times 10^{14}$  
Apparent dust mass $m~M_{\rm d}$ $M_{\odot }$ $2.6\times 10^9$ $2\times 10^8$  
$M_{\rm gas}$ from CO m M(H2+He) $M_{\odot }$ $3.7\times 10^{11}$ $2.4\times 10^{10}$  
$M_{\rm gas}$ from HCN m M(H2+He) $M_{\odot }$ $2\times 10^{11}$ -- contribution from collisional excitation only
$M_{\rm gas}$ from dust m M(H2+He) $M_{\odot }$ $3.9\times 10^{11}$ $3\times 10^{10}$  
$M_{\rm gas}$ from lvg model m M(H2+He) $M_{\odot }$ $4\times 10^{11}$ $1.3\times 10^{10}$  
Intrinsic CO properties:        
Gas kinetic temperature $T_{\rm kin}$ K 65 220  
Gas density $n({\rm H}_2)$ cm-3 $1\times 10^5$ $1\times 10^4$  
CO(1-0) brightness temp. $T_{\rm b}$ K 50 60  
True CO luminosity $L^\prime _{\rm CO}$ K kms-1 pc2 $9.2\times 10^8$ $1.3\times 10^8$ CO(1-0); $m_{\rm cold}=80$, $m_{\rm warm}$=100
Gas mass M(H2+He) $M_{\odot }$ $5\times 10^9$ $1\times 10^8$ $m_{\rm cold}=80$, $m_{\rm warm}=100$

True CO radius

$r_{\rm true}$ pc 100-350 65-150  
Dynamical mass within r $rV^2_{\rm rot}/G$ $M_{\odot }$ $1.6\times 10^{10}$ $6.5\times 10^9$ for i=65$^\circ $, $r_{\rm cold}=250$ pc, $r_{\rm warm}=100$ pc
Intrinsic Dust quantities:        
Dust Temperature $T_{\rm d}$ K $65\pm 18$ $220\pm 30$  
True FIR Luminosity $L_{\rm FIR}$ ${L}_{\odot}$ $2.5\times 10^{11}$ $1.7\times 10^{12}$ $m_{\rm cold}=80$, $m_{\rm warm}=100$
True dust mass $M_{\rm d}$ $M_{\odot }$ $3.3\times 10^7$ $2.1\times 10^6$ $m_{\rm cold}=80$, $m_{\rm warm}=100$

Source LaTeX | All tables | In the text