Table 2: Sample of sources.
Source RA (J2000) Dec (J2000) $V_{\rm LSR}$ $L_{\rm bol}$ Distance $M_{\rm env}$ $r_{\rm env}$ $N({\rm H_2})$ Type
  (hh mm ss) (dd mm ss) (km/s) ( $L_{\hbox{$\odot$ }}$) (pc) ( $M_{\hbox{$\odot$ }}$) (AU) (1023 cm-2)  

AFGL 2591a
20 29 24.7 +40 11 19 -5.5 $2 \times 10^4$ 1000 44 27 000 1.0 HMPO
W3 IRS5a 02 25 40.6 +62 05 51 -39.0 $1.7 \times 10^5$ 2200 262 60 000 6.6 HMPO
IRAS 16293-2422b 16 32 22.8 -24 28 33 4.0 27 160 5.4 8000 16.0 Class 0
N1333-I2c 03 28 55.4 +31 14 35 7.0 16 220 1.7 21 000 5.5 Class 0
N1333-I4Ac 03 29 10.3 +31 13 31 7.0 6 220 2.3 24 000 22.0 Class 0
L1448-C c 03 25 38.8 +30 44 05 5.0 5 220 0.93 15 000 1.7 Class 0
L483c 18 17 29.8 -04 39 38 5.2 9 200 1.1 32 000 9.3 Class 0
L723c 19 17 53.7 +19 12 20 11.2 3 300 0.62 21 000 3.4 Class 0
SMM4d 18 29 56.7 +01 13 15 7.9 11 250 5.8 9300 12.0 Class 0
V1057 Cyge 20 58 53.7 +44 15 28 4.1 70 650 1.4 15 000 0.5 FU Ori
L1489c 04 04 43.0 +26 18 57 7.0 3.7 140 0.097 9400 1.0 Class I
The luminosity and envelope parameters are from a van der Tak et al. (1999, 2000); b Schöier et al. (2002); c Jørgensen et al. (2002); d Pontoppidan et al. (2004); e this paper. The H2 column densities are calculated by integrating the power-law density distribution out to $r_{\rm env}$ ( $N({\rm H_2}) = \int n(r)~{\rm d}r$).


Source LaTeX | All tables | In the text