Contents

A&A 466, 41-61 (2007)
DOI: 10.1051/0004-6361:20065849

The XMM-Newton survey in the Marano field

I. The X-ray data and optical follow-up[*],[*],[*]

M. Krumpe1 - G. Lamer1 - A. D. Schwope1 - S. Wagner2 - G. Zamorani3 - M. Mignoli3 - R. Staubert4 - L. Wisotzki1 - G. Hasinger5


1 - Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
2 - Landessternwarte Heidelberg-Königstuhl, 69117 Heidelberg, Germany
3 - INAF - Osservatorio Astronomico di Bologna, Bologna, Italy
4 - Universität Tübingen, Institut für Astronomie und Astrophysik, 72076 Tübingen, Germany
5 - Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, 85741 Garching, Germany

Received 16 June 2006 / Accepted 7 December 2006

Abstract
We report on a medium deep XMM-Newton survey of the Marano Field and optical follow-up observations. The mosaicked XMM-Newton pointings in this optical quasar survey field cover 0.6 deg2 with a total of 120 ks good observation time. We detected 328 X-ray sources in total. The turnover flux of our sample is $f_{\rm {X}}\sim 5 \times 10^{-15}$ erg cm-2 s-1 in the 0.2-10 keV band. With VLT FORS1 and FORS2 spectroscopy we classified 96 new X-ray counterparts.

The central 0.28 deg2, where detailed optical follow-up observations were performed, contain 170 X-ray sources (detection likelihood ML>10), out of which 48 had already been detected by ROSAT. In this region we recover 23 out of 29 optically selected quasars. With a total of 110 classifications in our core sample we reach a completeness of $\sim$65%. About one-third of the XMM-Newton sources are classified as type II AGN with redshifts mostly below 1.0. Furthermore, we detect five high redshift type II AGN ( $2.2\le z\le2.8$).

We show that the true redshift distribution of type II AGN remains uncertain, since their lack of emission lines in a wide optical wavelength range hampers their identification in the redshift range 1<z<2. The optical and X-ray colours of the core sample indicate that most of the still unidentified X-ray sources are likely to be type II AGN. We calculate absorbing column densities and show that the ratio of absorbed to unabsorbed objects is significantly higher for type II AGN than for type I AGN. Nevertheless, we find a few unabsorbed type II AGN. The X-ray hardness ratios of some high redshift type I AGN also give an indication of heavy absorption. However, none of these type I objects is bright enough for spectral extraction and detailed model fitting. Types I and II AGN cover the same range in intrinsic X-ray luminosity, ( $10^{43}\le L_{\rm {X}} \le 10^{46}$), although type II AGN have a lower median intrinsic X-ray luminosity (log  $L_{\rm {X}} \sim 44.0$) compared to type I AGN (log  $L_{\rm {X}} \sim 44.4$). Furthermore, we classified three X-ray bright optically normal galaxies (XBONGs) as counterparts. They show properties similar to type II AGN, probably harbouring an active nucleus.

Key words: surveys - X-rays: galaxies - galaxies: active - galaxies: quasars: general

1 Introduction

X-ray surveys are essential to characterise the source population of the X-ray sky and are the only means to understand the nature of the X-ray background radiation. Deep X-ray surveys had been carried out during the last decades (Hasinger et al. 1998; Lehmann et al. 2001; Alexander et al. 2003) and showed that up to 80% of the soft X-ray background is due to active galactic nuclei (AGN). XMM-Newton and CHANDRA, thanks to their high sensitivity at hard X-rays, opened the absorbed X-ray universe for further studies and revealed a large population of obscured, low-luminosity, low-redshift X-ray sources (Hasinger et al. 2001). To characterise the X-ray sky properly and understand the X-ray background peak at $\sim$30 keV (Worsley et al. 2005), numerous surveys with a large variety in limiting flux and survey area are needed (see Fig. 1, in Brandt & Hasinger 2005). In this paper, we present new XMM-Newton data and spectroscopic classifications of X-ray sources in the Marano Field.

The Marano Field was named by an early optical quasar survey up to a limiting magnitude of $B_{\rm {J}}=22.0$ by Marano et al. (1988). Based on different optical selection techniques (colour-colour diagrams, grism plates, variability analysis) they discovered 23 broad emission line quasars and defined an extensive list of quasar candidates. Zitelli et al. (1992) completed this work by presenting a spectroscopically complete sample of quasars with $B_{{\rm J}} \leq 22.0$ using this list of quasar candidates. They confirmed 54 quasars including the former 23 quasars. Between December 1992 and July 1993, ROSAT observed the central Marano Field ($\sim$0.2 deg2) for 56 ks (Zamorani et al. 1999). The data revealed 50 X-ray sources with a limitingflux of $f_{\rm {X}} \geq 3.7 \times 10^{-15}$ erg cm-2 s-1 in the ROSAT band (0.5- 2.0 keV). Multi-colour CCD and spectroscopic data identified 42 X-ray sources (33 quasars, 2 galaxies, 3 clusters, and 4 stars). 66% of the optically selected quasars within the ROSAT field-of-view were detected as ROSAT X-ray sources. Gruppioni et al. (1999) carried out a deep radio survey at 1.4 and 2.4 GHz and detected 68 radio sources ( $f_{\rm {R}} > 0.2$ mJy). Follow-up observation provided redshifts for 30 objects.

Our new XMM-Newton data comprise an area three times larger, compared to the ROSAT survey, and are thus almost comparable in size to the optical quasar survey. We are reaching a survey sensitivity of $f_{\rm {X}}\sim 5 \times 10^{-15}$ erg cm-2 s-1 (turnover flux) over a contiguous area of 0.6 deg2. The XMM-Newton survey of the Marano Field is thus comparable with deep ROSAT surveys (e.g., the UDS, Hasinger et al. 1998) or with medium deep CHANDRA surveys (e.g., ChaMP, ).

The paper is organised as follows. In Sect. 2 we list the X-ray and optical data and the reduction of the data. Section 3 describes and summarises the spectroscopic classification of the X-ray sources. In Sect. 4 we make use of the spectroscopic classification and redshift determination to analyse the properties of different object classes. In this section we concentrate on a "core sample'' of objects in the central part of the field, where we reached the highest degree of completeness in the spectroscopic classification. Section 5 addresses additional objects in the Marano Field that are not X-ray detected. These objects were obtained as a control sample. Section 6 dicusses the results of the different object classes. Finally, our conclusions are outlined in Sect. 7. Unless mentioned otherwise, all errors refer to a $68\%$ confidence interval.

  
2 Observations and data reduction

  
2.1 XMM-Newton X-ray observations

Since the area of the optical quasar survey in the Marano Field is larger than the XMM-Newton field of view, the X-ray observations have been performed as a grid of $4 \times 4$ overlapping pointings with a spacing of $\sim$5 arcmin in right ascension and declination. The pointing in the north-western corner of the grid was shifted to cover the position of a deep far-infrared survey with the ISO satellite (Table 1 and Fig. 1). The ISO data are not addressed in this paper.


   
Table 1: XMM-Newton observations of the Marano Field. filter: T.-thin, M.-medium.
XMM-orbit/ Date RA Dec Time Filter
ObsID (2000) (3h:min:ss) (-55:min:ss) (ks)  
106/0112940201 7/7 15:27 06:13 10.3 T.
107/0112940201 10/7 16:03 21:41 10.4 T.
107/0112940301 10/7 15:27 11:22 10.6 T.
107/0112940401 10/7 15:27 16:32 10.5 T.
107/0112940501 10/7 15:27 21:41 7.8 T.
129/0129321001 22/8 16:03 11:22 6.1 T.
129/0129320801 22/8 16:03 16:32 10.6 M.
129/0129320901 22/8 16:03 06:13 10.6 T.
130/0110970101 24/8 13:09 03:54 10.9 T.
130/0110970201 24/8 14:15 11:22 9.1 T.
130/0110970301 24/8 14:15 16:32 9.1 T.
130/0110970401 24/8 14:15 21:41 9.1 T.
131/0110970501 26/8 14:51 06:13 9.1 T.
131/0110970601 26/8 14:51 11:22 9.9 T.
133/0110970701 30/8 14:51 16:32 9.9 T.
133/0110970801 30/8 14:51 21:41 8.8 T.

Due to the overlapping pointings some deviations from the standard XMM-Newton data analysis procedures were necessary, and are described here. The photon event tables from the 16 grid pointings were merged into a single event table with a common sky coordinate frame using the XMM SAS merge task. In this coordinate frame we created 240 images (one for each pointing, energy range, and instrument). The 5 bands used are 0.2-0.5 keV, 0.5-2.0 keV, 2.0-4.5 keV, 4.5-7.5 keV, and 7.5-12.0 keV. Each image has $963 \times 963$ pixels with four arcseconds binning. For each of these images separate exposure maps and background maps were created using the XMM SAS tasks eexpmap and esplinemap. One of the pointings (ObsID 0129320801) had accidentally been scheduled with "medium'' thickness filters, while all other pointings had been observed with "thin'' filters. To correct for the somewhat lower throughput of the medium filters at soft energies, we multiplied all exposure maps of this pointing with a correction factor derived from the energy conversion factors for the "thin'' and "medium'' filters. These ECFs were taken from the SSC document SSC-LUX-TN-0059 v.3 (Osborne 2001). The correction is largest in the softest band (0.2-0.5 keV), where the effective exposure in the affected pointing is reduced by 11%.

  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_1.ps}\end{figure} Figure 1: Averaged mos1 and mos2 exposure map (0.5-2.0 keV) of the $4 \times 4$ pointing pattern (small white crosses). The exposure time in the central region reaches 78 ks. The black rectangle shows the area covered by the WFI R-band images. The white polygon marks the area covered by the SOFI K-band images (see Sect. 2.2).

We then added the images, exposure maps, and background maps of the individual pointings, resulting in 15 images for 5 energy bands and 3 detectors. These images were used simultaneously as input for a detection run with eboxdetect and emldetect. The task emldetect applies a PSF-fit to each source found by eboxdetect to determine the source parameters. Since we use merged mosaic images of the field, each source image results from the superposition of several pointings. In each pointing the source is detected at a different position on the detector. Therefore, the standard configuration of emldetect, which uses the off-axis angle and position-angle of each source to extract the appropriate PSF from calibration files, could not be used here. Instead emldetect was modified to use the calibration PSF corresponding to an off-axis angle $\theta = 5~\rm {arcmin}$ throughout the entire field. This PSF is circular symmetric and is a good representation of the point sources in the merged images. For this work no extent models were fitted to the sources, therefore the source list produced by emldetect does not contain any information whether a source is extended or point-like. Generally, the X-ray data reduction and analysis was performed with XMM SAS version 5.1 (from 18/06/2001) with the abovementioned exception of an adapted version of emldetect. The version of emldetect used here suffered from an error, which resulted in the overestimation of detection likelihood values (XMM-Newton-NEWS #29, 11-Mar.-2003). All likelihood values quoted here have been corrected to adhere to the relation $ML = -{\rm {ln}}(P)$, where ML is the detection likelihood and P is the probability that the detection is caused by a random fluctuation of the background. All count rates and derived quantities are taken from the PSF fitting of emldetect. Using the combined expoure maps, emldetect corrects the source count rates for all spatial variations of telescope and detector efficiency, i.e., the count rates relate to the optical axis of each EPIC camera. Following Cash (1979), the 68% confidence intervals for the source positions and source fluxes were calculated using emldetect as follows: each parameter is varied until the statistic

\begin{displaymath}C = 2 \sum\limits_{i=1}^{N}(e_i-n_i \ln e_i) \end{displaymath}

exceeds the best-fit value of C by 1, where ei is the source model at the position of pixel iand ni is the number of counts in pixel i. We used energy conversion factors (ECFs) to calculate source fluxes in the band 0.2-10 keV (from the total EPIC count rate in the band 0.2-12 keV) and in the band 0.5-2.0 keV (from the EPIC count rate in the band 0.5-2.0 keV). The ECFs were derived by using XSPEC and the XMM SAS calibration files to simulate power-law spectra with photon index $\Gamma=1.8$ and the galactic column density of the field $N_{\rm H}=2.7 \times 10^{20}~{\rm cm^{-2}}$.

For all sources 3 hardness ratios of the form HR = (CR2 - CR1)/(CR1 + CR2) were calculated between the adjacent pn-detector energy bands 0.2-0.5 keV, 0.5-2.0 keV, 2.0-4.5 keV, and 4.5-7.5 keV. For example, HR2 was calculated between the bands 0.5-2.0 keV and 2.0-4.5 keV. The different energy responses of the mos- and pn-detectors result in different hardness ratios for the same source. If not noted otherwise the pn-values are used throughout the paper.

In total we detected 328 X-ray sources with detection likelihoods $ML\ge5.0$. The X-ray fluxes are in the range $f_{\rm {X}}= (0.16 - 54) \times 10^{-14}$ erg cm-2 s-1 (0.2-10 keV). The X-ray flux histogram (Fig. 3) shows the X-ray detection limit of our survey. Below $f_{\rm {X}}\sim 5 \times 10^{-15}$ erg cm-2 s-1 we are unable to detect the majority of the X-ray sources. In the central region (Fig. 2) we found 252 X-ray sources. The complete X-ray source list can be found in the Online Material, Appendix A.


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_2.ps} \end{figure} Figure 2: PN exposure map (0.5-2.0 keV) of the $4 \times 4$ pointing pattern. The exposure time in the central region reaches 35.5 ks. The area inside the black contour markes the "core sample'' region where the pn-detector exposure time exceeds six ks. White rectangles show the position of the spectroscopic masks for the optical follow-up observations (see Sect. 2.4).

Since the PSF-modelling task emldetect was only used with point-source models here, the detection procedure was not very sensitive to diffuse emission from clusters of galaxies. However, visual inspection of the X-ray images revealed no obviously extended sources. We estimate that extended cluster emission down to 0.5-2.0 keV fluxes of $2 \times 10^{-14}$ erg cm-2 s-1 should be detectable in this survey. The cluster log N(log S) of Rosati (1998) gives a surface density of $\sim$6 clusters per square degree at this flux. We would therefore expect about four clusters in the total area of the XMM observations and about two clusters in the 0.28 deg2 core region of the survey. Given the considerable cosmic variance of the cluster surface density the non-detection of clusters in the survey is consistent with the log N(log S). In any case the small number of expected clusters does not suggest a significant contribution of clusters of galaxies to our source sample.

XMM-Newton redetected all 50 ROSAT X-ray sources (Zamorani et al. 1999). However, two ROSAT X-ray sources have low detection likelihoods and were thus not included in the final XMM-Newton X-ray source list (Online Material, Appendix A). Figure 4 compares ROSAT and EPIC X-ray fluxes in the 0.5-2.0 keV band.

  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_3.ps} \end{figure} Figure 3: 0.2-10 keV X-ray flux histogram of the 328 XMM-Newton detected X-ray sources in the Marano Field. Up to an X-ray flux of $f_{\rm {X}}\sim 5 \times 10^{-15}$ erg cm-2 s-1 (turnover flux) we detect more and more sources. Below that X-ray flux the detection rate decreases dramactically.


  \begin{figure}
\par\includegraphics[width=8cm,clip]{5849_4.ps} \end{figure} Figure 4: Comparison between the 0.5-2 keV X-ray fluxes measured by ROSAT and XMM-Newton of all 50 ROSAT X-ray sources in the Marano Field. XMM-Newton fluxes are averages of the three individual EPIC camera fluxes. The black solid line represents equal ROSAT and XMM-Newton fluxes.

The X-ray fluxes of both missions are comparable down to ROSAT fluxes of $f_{\rm {X}} \sim 6.0 \times 10^{-15}$ erg cm-2 s-1. Among the 13 objects (broad emission line objects) with $f_{\rm {X}} \ge 10^{-14}$ erg cm-2 s-1 (ROSAT), five show variability of about a factor of two in both directions. Throughout the whole paper we refer to the X-ray sources by mentioning the X-ray source number without any letter as suffix (e.g. 452). These numbers refer to the sequence numbers in the original emldetect source list and are non-contiguous due to the removal of sources below ML = 5.0 after correction of the detection likelihoods.

  
2.2 The optical data

2.2.1 WFI R-band observations

The central region of the Marano Field has been observed in the UBVRI bands with the ESO Wide-Field-Imager (WFI). Here we make use of the deep (7000 s) R-band image (Mignoli & Zamorani 1998) with a limiting magnitude $R \simeq 22.5$ (defined as turnover magnitude minus 0.5 mag, see Fig. 5). The WFI-image covers an area of 35 $\times$ 32 arcmin well aligned with the region of the deepest XMM-Newton coverage (Fig. 1).


  \begin{figure}
\par\includegraphics[width=8.2cm,clip]{5849_5.ps} \end{figure} Figure 5: Magnitude histogram of the sources detected in the WFI R-band image. Completeness in detecting objects is lost for R>23.

2.2.2 SOFI K-band observations

The K-band data ( $2.0{-}2.3~\mu$m) were obtained at the ESO New Technology Telescope (NTT) with the SOFI instrument. With an area of 754 arcmin2 the K-band mosaic covers a slightly smaller area than the WFI R-band observation and is well aligned with the deepest XMM-Newton exposure (Fig. 1). The SOFI observations consist of a mosaic of 33 jittered pointings, each covering $5 \times 5$ arcmin with an exposure time of 29 min each. The limiting magnitude is $K\simeq20$ (turnover magnitude minus 0.5 mag, see Fig. 6).


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_6.ps} \end{figure} Figure 6: Histogram of the K-band magnitudes in the NTT-SOFI images. Completeness in detecting objects is lost for K>20.5.

2.2.3 VLT R-band pre-images
R-band pre-images for the spectroscopic follow-up observation were obtained with the Focal Reducer and Spectrograph FORS1 and FORS2 at the ESO Very Large Telescope (VLT). The first run (FORS1) contained six and the second run (FORS2) 12 optical images. The summed pre-imaging area is $\sim$530 arcmin2 in the central region of the Marano Field (Fig. 2). Since the field was not contiguously covered by FORS spectroscopy, the pre-images also cover only $\sim$50% of the central area of the X-ray survey.

  
2.3 Target selection for optical spectroscopy

Our target selection for the optical spectroscopy was primarily based on FORS1/FORS2 R-band pre-images. WFI R-band and SOFI K-band data were used in addition to support the target selection on the pre-images in case of faint counterparts. The chosen fields represent a compromise in terms of maximum survey area and source density because of limited telescope time. First priority for spectroscopic follow up was given to candidates with a likelihood of existence ML > 10 within a 2 $\sigma _{\rm {X}}$ error radius. The total position error is $\sigma_{\rm {X}} = \sqrt {\sigma_{\rm {stat.}}^2+\sigma_{\rm {syst.}}^2}$. The statistical errors $\sigma_{\rm {stat.}}$ of the positions were calculated as described in Sect. 2.1. The systematic errors are caused by uncertainties in the spacecraft attitude, errors in the linearisation of the detector coordinates, and undersampling of the PSF (in particular for the PN camera). At this stage, we allowed a systematic position error of $2.0\hbox{$^{\prime\prime}$ }$, see Sect. 3.2 for a more accurate estimation of the systematic position errors.

The multi-object spectroscopy masks were designed with the software fims 2 provided by ESO. For all spectroscopic targets we used straight slitlets with a nominal length of ten arcseconds and width of one arcsecond. For extended sources or closely spaced candidate counterparts, a different slit length, 6-14 arcsec, was used. Still available mask positions were filled with candidate objects not fulfilling the main selection criteria and with additional random non-X-ray emitting galaxies.

  
2.4 Spectroscopic observations

The FORS1 multi-object spectroscopy (MOS) run with six masks was obtained on November 20th, 2000 by using grism GRIS_150I+17. No order separation filter was used. The exposure time for every mask was 2400 s. The seeing was $0.7\pm0.1$ arcsec.

The second run was performed with FORS2 in spectroscopic mask mode (MXU) from November 27th-30th, 2002. We aimed for an exposure time of 3 $\times$ 1800 s per mask, but weather and time constraints required some deviations from this general scheme (Table 2). Grism GRIS_150I+27 was used for all masks.

   
Table 2: Details of FORS2 spectroscopic mask mode observation (see Fig. 2).
Mask Observation Filter Seeing
  (each 1800 s)   (in arcsec)
mask1 3 none 0.63
mask2 4 none 1.36
mask3 3 none 1.05
mask4 3 none 0.78
mask5 3 none 0.93
mask6 3 GC 375 0.75
mask7 3 none 0.80
mask8 3 none 0.81
mask9 2 none 0.66
mask10 3 none 0.76
mask11 1 none 0.96
mask12 2 none 0.64


   
Table 3: Setups for the optical spectroscopy.
  FORS1 FORS2
Grism GRIS_150I+17 GRIS_150I+27
Dispersion [$\AA /$mm] 230 225
Pixel size [$\mu$m] 24 $\times$ 24 15 $\times$ 15
Step width [$\AA /$Pixel] 5 3

To prevent second order contamination, the first mask (mask6) in the observing sequence was observed through filter GC 375, which limited the wavelength range from 3850 to 7500 Å. A comparison with the second mask without an order separating filter showed that the contamination effect is negligible. Hence, for all following masks the filter was removed from the light path resulting in a wavelength range for central targets of the final spectra from 3500 to 10 000 Å.

2.5 Spectroscopic data reduction

The reduction of the data was accomplished by a semiautomatic pipeline coded in MIDAS. It was specially designed to reduce FORS2-MXU data with as little interaction with the user as possible. After modifications this code was also used to reduce the FORS1-MOS data. The bias correction was done in the standard manner with careful attention to possible time dependence on the bias level and dark current. An ordinary flat field correction was used to rectify the pixel-to-pixel variation.

   
Table 4: Origin of optical counterparts to XMM sources.
Obtained optical spectra for X-ray sources 207
Positive literature classifications by Marano  
et al. (1988) and Zitelli et al. (1992) (partly reobserved) 30
New optical counterparts of ROSAT sources  
Zamorani et al. (1999) (partly reobserved) 14
New positive spectroscopic classifications of XMM sources 96
Total positive spectroscopic classifications of XMM sources 140

2.5.1 Wavelength calibration
We established a 2-d wavelength calibration in the pipeline. This allowed us to correct the distortion perpendicular to the dispersion direction and significantly improved the signal-to-noise ratio of the extracted spectra. The calibrated wavelength range is 3500-10 000 $\AA$. However, many spectra were located close to the edge of the CCD. Hence, there are substantial variations in the wavelength range of the spectra. The average uncertainty of the wavelength calibration is 0.2 Å  but reaches a maximum of $\Delta \lambda \pm 1.5~\AA$ at long and short wavelength ends. Further details on the optical setups can be found in Table 3. We estimate the spectral resolution finally achieved by measuring the width of the arc lines in the lamp spectra to $\Delta \lambda \sim 21~ \AA$ (FWHM).
  \begin{figure}
\par\includegraphics[angle=270,width=7.9cm,clip]{5849_7.ps} \end{figure} Figure 7: Optical atmospheric absorption corrected, wavelength and flux calibrated spectrum for X-ray source 480. The black spectrum marks the object's spectrum. The green line (see the online colour version of the manuscript) shows the error spectrum. Possible emission and absorption features in the spectrum are labelled. The spectral feature at 5580 Å is spurious due to incomplete substraction of a night sky line.

2.5.2 Object and sky definition
The aquisition slit-through images were used to roughly define the position and width of every single slit in an image. For an optimal definition of the object and sky region in the spectrum, the pipeline then displays intensity profiles in graphic windows and an image of the corresponding spectrum. After a careful inspection of these pipeline outputs, the object and the sky region were defined manually for every single spectrum. Consequently, bad pixel/lines/colums in the raw data can be excluded for the extraction and scientific misinterpretation of artifacts in the final spectra can be avoided. Whenever possible, two sky regions, on both sides of the target spectrum, were defined.

2.5.3 Extraction of spectra

The extraction is based on an optimal extraction algorithm (Horne 1986) including a cosmic ray rejection. Extensive tests determined the optimal extraction parameters. Standard flux calibration was applied. Since FORS2-mask6 was observed with an additional filter, a different standard star was used. All spectra were corrected for atmospheric absorption using the standard ESO extinction correction function scaled to the given airmass.

The n individual spectra of a given counterpart object were combined to form one single final spectrum. The individual spectra were firstly normalised to the same mean intensity. The normalisation factor was determined from an analysis of all spectra in a given mask. The final spectrum is the uncertainty-weighted mean spectrum.

    
3 Spectroscopic classification of the X-ray counterparts

The spectroscopic classification of the individual X-ray sources was primarily based on the FORS1 and FORS2 spectra. In addition, we used optical and X-ray images for a reliable identification (see Online Material, Appendix C). Broad emission line objects were immediately accepted as X-ray counterparts. Narrow emission line galaxies and normal galaxies were accepted as X-ray counterparts, if no other optical candidate was found within the position error range. Stars were regarded as likely counterparts if the X-ray colours indicated a soft X-ray spectrum compatible with coronal emission of $\leq $1 keV. Every X-ray identification was confirmed by at least two individuals.
  \begin{figure}
\par\includegraphics[angle=270,width=8.3cm,clip]{5849_8.ps} \end{figure} Figure 8: Adopted mean k correction from observed R-band to rest-frame $M_{\rm {B}}$, for broad emission line AGN.

For the large majority of our spectra the signal-to-noise ratio (SNR) is sufficient to give reliable classifications and redshifts. Like other X-ray identification surveys, we encounter the problem of difficult classification of the optical spectra below a certain SNR. For spectra with a SNR = 3-5, the identification of narrow emission lines was still possible. However, at this SNR faint broad emission lines and normal galaxy spectra are very difficult to identify. Figure 7 shows a spectrum of a narrow emission line galaxy with a SNR = 2.4 (continuum near the O II emission line), which is close to the identification limit. Only one significant narrow emission line at $\sim$7100 Å is found. The spectral shape makes it reasonable to identify this line as O II emission line. Even though this classification is likely, an unambiguous redshift determination and classification of the type cannot be given. Spectra with a SNR less then $\sim$2.5 are not identifiable. The reliability of the redshift determination and classification of the optical spectra is given by flags in Col. (9) Flags of Table 8.

   
Table 5: X-ray counterpart distribution.
Object class Total number Percentage
Broad emission line objects (B) 89 63%
Narrow emission line objects (N) 36 26%
Galaxies (G) 6 4%
Stars (S) 9 7%


   
Table 6: Properties of the core sample.
X-ray sources ( $t_{\rm {PN}}>6$ ks, ML >10)   170
Optically identified X-ray counterparts   158
Spectroscopically classified optical counterparts   110

The complete list of X-ray classification is given in Table 8. The columns are described as follows:

 

 
Table 7: Fractions of absorbed sources in different X-ray luminosity bins based in Fig. 19c. Only objects with $N_{\rm {H}}> 2\times \Delta N_{\rm {H}}$ are selected.
  $ 43 \le {\rm log}(L_{\rm {X}}) < 44$ $ 44 \le {\rm log}(L_{\rm {X}}) < 45$ ${\rm log}(L_{\rm {X}}) \ge 45$
type I 0% (0/19) 10% (4/42) 0% (0/8)
type II 43% (6/14) 58% (7/12) 33% (1/3)


(1) No
Classification of a counterpart object consists of the sequence number of the X-ray source list and a suffix (A, B) to discriminate between different candidates.

(2) RA [hh:min:s] and (3) Dec [deg:min:s]
Right ascension and declination of the optical candidate counterpart (J2000).

(4) DistOX [arcsec]
Spatial offset between the X-ray and optical positions.

(5) K
SOFI K-band magnitude of the spectroscopically classified candidate, whenever available.

(6) R
WFI R-band magnitude of the spectroscopically classified candidate, whenever possible.

(7) Class
Spectroscopic classification of the identified object. S - star, G - normal galaxy (no emission lines), N - narrow emission line galaxy with unresolved emission lines (at 6000 $\AA$ our spectral resolution of 21 $\AA$ corresponds to 1050 km s-1), B - broad emission line object (all measured line widths have $v_{\rm {FWHM}}>2500$ km s-1), and ? - undefined object.

(8) z
Spectroscopic redshift of the identified object. The redshift is taken from the literature for objects with "1 - -'' and "0 - -'' in Col. (9) Flags. Column (15) Rem. states the source of redshift determination and classification.

(9) Flags
X-ray identification flag, redshift flag, and classification reliability flag. The first number (0,1) marks whether a spectroscopically classified object was accepted as X-ray counterpart. Objects which we consider to be the correct identification of the X-ray source are flagged by "1'', while "0'' flags objects not considered as the X-ray source.
The second (middle) flag states the redshift reliablility. A redshift flag "1'' means a reliable, well-established redshift determined by several spectral features. "0'' marks objects where the redshift determination relies on a single but reasonable spectral feature.
The third (last) flag characterises the classification reliability. A flag "1'' marks that the object type as given in "(7) Class'' is well established and reliable. Flag "0'' indicates an uncertain classification of the object type. Either high SNR spectral features of the object do not allow a proper classification or the optical spectra do not allow to give a reliable classification of the object type because of a low SNR and/or insufficient wavelength coverage of the optical spectra. The latter is illustrated in Fig. 7. The narrow O II line indicates a narrow emission line galaxy. However, the SNR of the spectrum does not allow us to judge the existence of a broad Mg II line and, hence, a classification as type I AGN. Since C IV and C III are outside the spectrum's wavelength range, Mg II is the only possible broad-line feature. The most likely classification of this object is a narrow emission line galaxy. However, the given arguments show that a classification as type I AGN cannot be excluded. Therefore, the classification flag for this object is "0''. Objects with "1 - -'' and "0 - -'' have only an X-ray identification flag since their redshift and classification relies on follow-up surveys previously done in the Marano Field (see Col. (15) Rem.).

  \begin{figure}
\par\includegraphics[angle=270,width=8.2cm,clip]{5849_9.ps} \end{figure} Figure 9: Adopted conversion term to estimate AB magnitudes at fixed rest-frame wavelength $\lambda = 2500$ Å from observed R-band magnitudes.


  \begin{figure}
\par\includegraphics[width=8.2cm,clip]{5849_10.ps} \end{figure} Figure 10: a) Number of objects identified as X-ray counterparts vs. difference in X-ray and optical position scaled to a 1 $\sigma _{\rm {X}}$ position error with a systematic X-ray position error of 2 arcsec. The smooth line represents the theoretical distribution. The distribution of type I AGN, which are a class of well-accepted X-ray emitters, is plotted as a dotted line. The solid line characterises the complete sample including type I AGN, type II AGN, galaxies, and stars. b) The 1 $\sigma _{\rm {X}}$ position error was adjusted to the observed distribution by reducing the systematic X-ray position error from $2\hbox {$^{\prime \prime }$ }$ to $0.7\hbox {$^{\prime \prime }$ }$. The complete sample agrees well with the type I AGN distribution, which gives evidence of a marginally false match rate.

(10) log (L XOBS [erg s-1])
Observed rest-frame X-ray luminosity (logarithmic units) in the 0.2-10 keV energy band calculated by using Eq. (1). The k-correction vanishes since we assume an energy index $\alpha = -1$ with $F_{\rm {\nu}} \sim \nu^ {~\alpha} \sim \nu^{~1-\Gamma}$ ($\Gamma$-photon index) based on Alexander et al. (2003) and Mainieri et al. (2002). The luminosity distance $d_{\rm {L}}$ was computed by the analytical fit for flat cosmologies with $\Omega_{\rm {m}} =0.3$, $\Omega_{\Lambda} =0.7$, $H_{\rm {0}}=70$ km s-1 Mpc-1 following Szokoly et al. (2004).

 
$\displaystyle L_{\rm {X}} = \frac{4~\pi~d_{\rm {L}}^{2}}{(z+1)^{~\alpha+1}}f_{\rm {X}} .$     (1)


(11) MB
Absolute magnitudes $M_{\rm {B}}$ (in the Johnson system) were estimated only for type I AGN using the relation

 
$\displaystyle M_{\rm {B}} = R + 5 - 5 \log (d_{\rm {L}}/{\rm pc}) + K(z) ,$     (2)

where $d_{\rm {L}}$ is the luminosity distance and K(z) is the customary k-correction term. In our case, this term includes the transition from observed-frame R-band to rest-frame B-band, assuming a mean spectral energy distribution for all sources, and also the (1+z) bandwidth stretching factor. For the type I AGN we computed K(z) from the composite SDSS quasar spectrum (Vanden Berk et al. 2001). The resulting graph is shown in Fig. 8.

(12) $\alpha_{OX}$
The broad band spectral index $\alpha _{\rm OX}$ roughly characterises the UV-X-ray spectral energy distribution by connecting the rest-frame points at 2500 Å and 1 keV with a simple power-law, $F_{\nu} \propto \nu^ {-\alpha_{\rm OX}}$. For each broad emission line AGN we estimated its flux at a fixed rest-frame wavelength of $\lambda = 2500$ Å, applying the relation

 
$\displaystyle m_{\rm AB}(2500~{\rm\AA}) = R + \Delta m(z) ,$     (3)

where R is the quoted R-band magnitude, $m_{\rm AB}(2500~{\rm\AA})$ is the predicted magnitude at 2500 Å - expressed in the AB system for easy conversion into monochromatic fluxes -, and $\Delta m(z)$ is a redshift-dependent term (similar, but not identical to the k-correction) that also accounts for the zeropoint transformation from the Vega to the AB system. Our adopted $\Delta m(z)$ relation, again computed from the SDSS composite quasar spectrum of Vanden Berk et al. (2001), is shown in Fig. 9. Notice that at the typical redshifts of $z \sim 1.5$ of our broad line AGN, the observed R-band approximately traces a rest-frame wavelength of $\lambda_{\rm rest} \sim 2600$ Å, implying that the spectral energy distribution corrections are small. The resulting AB magnitudes are then converted into fluxes following the definition of the AB system (Oke & Gunn 1983):
 
$\displaystyle m_{\rm AB}(2500~{\rm\AA}) = -2.5 \log(F_\nu(2500~{\rm\AA}))-48.60,$     (4)

where $F_\nu(2500~{\rm\AA})$ is given in erg s-1 cm-2 Hz-1. The X-ray flux at 1 keV is computed by:
 
$\displaystyle f(0.2-10~{\rm keV}) = F_\nu(1~{\rm keV})
\int\limits_{0.2~{\rm keV}}^{10~{\rm keV}}
E^{\alpha} {\rm d}E ~~~~~~~{\rm with}~~ \alpha = -1.$     (5)

Hence, the broad band spectral index is obtained as
 
$\displaystyle \alpha_{\rm ox} =
\frac{\log(F_\nu(2500~{\rm\AA}))-\log(F_\nu(1~{\rm keV}))}{\log(\nu(1~{\rm keV}))-\log(\nu(2500~{\rm\AA}))}\cdot$     (6)

(13) NH [cm-2]
X-ray absorbing hydrogen column density in units of $10^{22}~{\rm cm^{-2}}$(see Sect. 4.4).

(14) log ( LXINT [erg s-1] )
Intrinsic rest-frame X-ray luminosity (logarithmic units) in the 0.2-10 keV energy band after X-ray flux correction for the absorbing hydrogen column density. Calculation uses Eq. (1).

(15) Rem.
Remarks for individual objects: 1 - optically selected and spectroscopically classified quasar by Marano et al. (1988); 2 - optically selected and spectroscopically classified quasar by Zitelli et al. (1992); 3 - ROSAT X-ray source with spectroscopic classification and redshift determination by Zamorani et al. (1999); 4 - ROSAT X-ray source with no or wrong identification by Zamorani et al. (1999); 5 - unclassified radio objects within  $5.0\hbox{$^{\prime\prime}$ }$, Gruppioni et al. (1999); 6 - spectroscopic classification and redshift taken from Teplitz et al. (2003); 7 - radio source, spectroscopic classification and redshift taken from Gruppioni et al. (1999), and C - individual comment to an object (see Sect. 3.1).

  
3.1 Comments to individual objects

9A: New redshift determined for this source, formerly known as Zamorani et al. (1999) X043-12.

15A: Object 15A is not regarded as the optical counterpart, since the identification of the line features is uncertain and the positional offset is rather large. A very faint object at the detection limit lies in the X-ray error circle. A lower limit of $f_{\rm {X}}/f_{\rm {opt}}\sim 65$ for this source was estimated by assuming a limiting magnitude of R=24.

17A: Source 17 is a likely X-ray blend with large contrast between the two individual sources. Object 17A is a unique identification of the brighter X-ray source, whose X-ray flux is likely to be overestimated due to blending.

  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_11.ps} \end{figure} Figure 11: WFI R-band magnitude vs. difference in X-ray and optical position scaled to a $1\sigma _{\rm {X}}$ position error with a systematic X-ray position error of 0.7 arcsec. Crosses mark type I AGN, asterisks type II AGN, triangle galaxies, and rectangles stars.

20A and 20B: Zamorani et al. (1999) identified source 20 with the M star 20B. Some contribution of the M star's X-ray flux cannot be excluded, but the identification with the type II AGN (object 20A) seems more likely, since the X-ray colours indicate a relatively hard spectrum.

22A and 22B: X-ray source 22 is a probable blend. Objects 22A and 22B fall on top of the two suspected point sources. We regard both optical objects as likely counterparts of the X-ray blend and distribute the measured X-ray flux evenly between the two sources.

26A: New redshift determined for this source, formerly known as Zamorani et al. (1999) X301-29.

32A: N V strongest emission line in the spectrum (brighter than Ly-$\alpha$). Narrow emission lines are present and the object is classified as "N'' (narrow emission line galaxy). However, all narrow emission lines have underlying broad components. Therefore, the classification flag is set to "0''.

35A and 35B: Two galaxies at equal redshift, the brighter galaxy 35A is regarded as the X-ray counterpart. The possibility that the X-ray source is a galaxy cluster cannot completely excluded, but an X-ray extent is not obvious. For 35A a new redshift is determined (update to Zamorani et al. 1999, X022-48).

42A: New redshift determined for this source, formerly known as Zamorani et al. (1999) X031-24.

46A: X-ray blend with major contribution from the southwestern component with type I AGN 46A as counterpart.

47A and 47B: Two narrow emission line galaxies at equal redshift. The possibility that the X-ray source is a galaxy cluster cannot completely excluded, but an X-ray extent is not obvious. 47A is assumed to be the optical counterpart.

63A: Unresolved narrow emission lines are present and the object is classified as "N'' (narrow emission line galaxy). However, the C IV emission line has an underlying broad component. Therefore, the classification flag is set to "0''.

66A: The identification is not unique, since the optical image reveals a possible second object inside the 1$\sigma$-X-ray position error circle.

133A: Narrow emission lines are present. The object is classified as "N'' (narrow emission line galaxy). However, Ly-$\alpha$ shows a resolved, broad base. Therefore, the classification flag is set "0''.


 

 
Table 8: Optical properties of candidate counterparts of Marano XMM-Newton X-ray sources. For a detailed explanation of the individual columns see Sect. 3.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
No RA Dec $Dist_{\rm {OX}}$ K R Class z Flags $\log(L_{\rm {X_{OBS}}}$) $M_{\rm {B}}$ $\alpha _{\rm OX}$ $N_{\rm {H}}$ $\log(L_{\rm {X_{INT}}}$) Rem.
1A 3 15 49.6 -55 18 12 1.52 17.14 20.39 B 0.808 1 - - 44.70 -22.26 1.32 $\rm0.00_{-0.00}^{+0.01}$ 44.70 2, 3
2A 3 15 47.5 -55 29 04 1.37 - 19.66 B 0.464 1 - - 44.59 -21.66 1.22 $\rm0.00_{-0.00}^{+0.04}$ 44.59 2
3A 3 17 32.7 -55 20 26 1.35 - - B 0.406 1 - - 44.24 - - $\rm0.28_{-0.12}^{+0.10}$ 44.44 2
4A 3 13 34.0 -55 26 43 1.26 - 17.05 B 0.987 111 45.28 -26.04 1.74 $\rm0.00_{-0.00}^{+0.01}$ 45.28 1
5A 3 16 50.4 -55 11 09 0.78 - 17.51 B 2.531 1 - - 45.63 -27.79 2.00 $\rm0.00_{-0.00}^{+0.01}$ 45.63 1, 3
6A 3 16 05.8 -55 15 39 1.12 17.79 20.64 B 0.636 111 44.01 -21.49 1.46 $\rm0.00_{-0.00}^{+0.01}$ 44.01 1, 3
7A 3 15 05.6 -55 09 42 0.13 18.25 21.98 B 0.501 111 43.59 -19.56 1.30 $\rm0.00_{-0.00}^{+0.01}$ 43.59 4
8A 3 14 56.0 -55 20 07 1.17 15.53 19.03 G 0.387 111 43.32 - - $\rm 2.09_{-0.73}^{+0.47}$ 43.90 3, 5
9A 3 15 09.9 -55 13 13 1.18 18.81 22.63 N 1.427 111 44.64 - - $\rm0.33_{-0.20}^{+0.18}$ 44.73 4, C
10A 3 13 28.3 -55 10 18 0.49 16.98 20.24 B 1.378 111 45.05 -23.58 1.45 $\rm0.23_{-0.16}^{+0.18}$ 45.12 3
11A 3 15 11.3 -55 09 27 0.35 17.98 21.02 B 1.192 111 44.51 -22.45 1.47 $\rm0.00_{-0.00}^{+0.01}$ 44.51 2, 3
12A 3 14 32.4 -55 14 40 0.46 8.87 - S 0.000 1 - - - - - $\rm0.00_{-0.00}^{+0.01}$ - 3
13A 3 13 50.9 -55 18 38 1.54 18.78 21.35 B 0.500 1 - - 43.66 -20.18 1.37 $\rm0.00_{-0.00}^{+0.01}$ 43.66 3
14A 3 16 38.0 -55 06 37 1.71 17.47 20.68 B 0.854 1 - - 44.28 -22.09 1.47 $\rm0.00_{-0.00}^{+0.01}$ 44.28 2, 3
15A 3 15 51.7 -55 08 17 9.58 - 21.69 N 0.331 000 - - - - - 4, C
16A 3 15 38.3 -55 01 40 0.41 19.40 21.30 B 1.374 111 44.88 -22.51 1.33 $\rm0.00_{-0.00}^{+0.01}$ 44.88 3
17A 3 15 28.9 -55 10 27 3.62 18.49 21.27 B 2.161 111 45.15 -23.69 1.48 $\rm0.00_{-0.00}^{+0.19}$ 45.15 2, 3, C
18A 3 14 21.1 -55 24 05 2.02 - 21.65 B 0.614 1 - - 43.69 -20.40 1.41 $\rm0.05_{-0.05}^{+0.08}$ 43.72 3
19A 3 15 25.2 -55 18 27 0.82 19.78 22.13 B 1.573 111 44.53 -22.03 1.42 $\rm0.00_{-0.00}^{+0.16}$ 44.53 3
20A 3 16 21.5 -55 17 59 0.63 17.33 - N 2.207 111 45.01 - - $\rm0.83_{-0.44}^{+0.52}$ 45.12 C
20B 3 16 21.1 -55 18 01 4.11 13.28 16.72 S 0.000 011 - - - - - 3
21A 3 16 26.1 -55 22 51 1.38 12.16 16.50 S 0.000 1 - - - - - $\rm0.00_{-0.00}^{+0.02}$ - 3
22A 3 15 19.7 -55 02 25 4.63 19.41 23.33 B 1.78 111 44.63 -21.19 1.11 $\rm0.00_{-0.00}^{+0.10}$ 44.63 C
22B 3 15 20.1 -55 02 34 4.62 17.36 19.98 B 1.353 111 44.34 -23.79 1.66 $\rm0.00_{-0.00}^{+0.06}$ 44.34 1, 3, C
23A 3 14 32.1 -55 19 59 1.24 18.32 21.01 B 1.271 111 44.37 -22.62 1.56 $\rm0.00_{-0.00}^{+0.02}$ 44.37 1
25A 3 15 34.7 -55 19 26 0.85 18.12 - B 1.430 111 44.48 - - $\rm0.00_{-0.00}^{+0.03}$ 44.48 3
26A 3 14 36.0 -55 14 03 0.80 17.90 20.23 B 1.19 111 44.15 -23.24 1.76 $\rm0.00_{-0.00}^{+0.03}$ 44.15 4, C
27A 3 15 38.7 -55 22 19 1.74 18.04 21.75 B 1.190 111 44.23 -21.72 1.46 $\rm0.00_{-0.00}^{+0.01}$ 44.23 3
28A 3 15 07.6 -55 04 56 0.64 17.75 20.15 B 1.315 111 44.41 -23.56 1.71 $\rm0.00_{-0.00}^{+0.01}$ 44.41 2, 3
29A 3 15 11.1 -55 15 30 0.42 9.28 - S 0.000 1 - - - - - $\rm0.00_{-0.00}^{+0.01}$ - 3
32A 3 15 47.0 -55 17 55 1.44 17.75 22.96 N 2.727 110 45.09 - - $\rm 14.5_{-8.2}^{+7.9}$ 45.55 C
33A 3 13 19.4 -55 16 17 0.62 17.18 19.21 B 2.166 1 - - 45.05 -25.76 1.88 $\rm0.10_{-0.10}^{+0.33}$ 45.07 1
34A 3 15 59.1 -55 26 37 1.72 18.32 20.70 B 0.983 1 - - 44.36 -22.38 1.50 $\rm0.00_{-0.00}^{+0.01}$ 44.36 3
35A 3 15 03.2 -55 19 06 0.67 16.17 19.54 N 0.391 111 42.91 - - $\rm 1.32_{-0.58}^{+0.59}$ 43.39 4, C
35B 3 15 03.2 -55 19 09 3.28 - 19.54 N 0.391 011 - - - - - C
36A 3 14 11.1 -55 18 29 3.12 19.91 - - - - - - - - - 4
38A 3 16 30.0 -55 19 11 2.28 19.66 22.33 B 1.254 111 44.50 -21.27 1.27 $\rm0.00_{-0.00}^{+0.01}$ 44.50 2, 3
39A 3 13 39.7 -55 01 51 0.95 19.24 23.41 N 0.862 110 44.07 - - $\rm0.76_{-0.33}^{+0.63}$ 44.32  
41A 3 16 07.9 -55 17 24 1.58 18.54 22.36 B 0.979 111 43.85 -20.71 1.43 $\rm0.00_{-0.00}^{+0.05}$ 43.85 4
42A 3 15 48.7 -55 22 46 0.94 19.37 21.63 B 1.54 111 44.48 -22.47 1.51 $\rm0.00_{-0.00}^{+0.02}$ 44.48 4, C
43A 3 13 32.5 -55 10 49 1.14 19.52 23.40 B 2.013 111 44.76 -21.41 1.24 $\rm0.17_{-0.17}^{+0.32}$ 44.80  
44A 3 13 46.8 -55 00 31 1.07 17.42 21.40 B 0.785 111 43.82 -21.19 1.51 $\rm0.00_{-0.00}^{+0.10}$ 43.82  
44B 3 13 47.4 -55 00 30 6.41 - 22.24 N 0.480 000 - - - - -  
45A 3 14 51.8 -55 19 32 2.49 - 23.09 N 0.584 100 43.08 - - $\rm0.69_{-0.27}^{+0.51}$ 43.38 4
46A 3 16 07.0 -55 23 24 4.01 19.16 21.98 B 1.308 111 44.34 -21.71 1.43 $\rm0.00_{-0.00}^{+0.09}$ 44.34 C
47A 3 15 38.7 -55 10 44 1.34 19.06 23.94 N 0.900 100 43.47 - - $\rm 2.09_{-1.09}^{+1.54}$ 43.89 C
47B 3 15 39.1 -55 10 42 3.72 19.99 22.76 N 0.89 000 - - - - - C
49A 3 16 38.3 -55 20 14 1.66 16.01 20.26 G 0.454 111 43.22 - - $\rm 1.45_{-0.63}^{+0.65}$ 43.70  
50A 3 14 09.9 -55 17 46 1.25 18.35 23.66 N 0.986 110 43.79 - - $\rm 3.63_{-1.58}^{+1.63}$ 44.30  
51A 3 16 30.6 -55 15 03 1.83 16.57 20.95 N 0.58 110 43.37 - - $\rm0.05_{-0.05}^{+0.08}$ 43.41  
52A 3 14 51.4 -54 57 14 1.82 - - B 1.829 1 - - 44.77 - - $\rm0.00_{-0.00}^{+0.04}$ 44.77 2
53A 3 13 58.8 -55 17 54 0.67 18.82 23.23 N 1.340 100 44.07 - - $\rm 3.98_{-2.93}^{+2.51}$ 44.50  
54A 3 16 12.4 -54 59 10 2.49 - - B 2.744 1 - - 45.05 - - $\rm0.00_{-0.00}^{+0.40}$ 45.05 1
56A 3 12 50.9 -55 17 26 1.94 16.65 20.11 B 0.641 111 43.90 -22.04 1.60 $\rm0.01_{-0.01}^{+0.08}$ 43.91 1
57A 3 13 44.0 -55 19 24 2.33 17.11 20.12 B 0.281 1 - - 42.52 -19.93 1.79 $\rm0.01_{-0.01}^{+0.08}$ 42.54 3
58A 3 13 01.7 -55 22 23 0.70 - 21.10 B 0.589 111 43.69 -20.85 1.49 $\rm0.00_{-0.00}^{+0.02}$ 43.69  
59A 3 13 39.4 -55 14 26 0.77 17.37 21.83 B 0.978 111 43.94 -21.23 1.49 $\rm0.00_{-0.00}^{+0.02}$ 43.94  
60A 3 14 26.3 -55 17 47 0.71 17.62 21.77 B 0.957 111 43.69 -21.25 1.59 $\rm0.03_{-0.03}^{+0.12}$ 43.71 3, 5
63A 3 15 16.9 -55 06 02 1.25 20.37 23.19 N 2.800 110 44.88 - - $\rm 4.37_{-2.10}^{+11.2}$ 45.13 C
64A 3 13 33.7 -55 10 21 2.32 17.21 21.51 B 1.165 111 43.95 -21.91 1.61 $\rm0.00_{-0.00}^{+0.08}$ 43.95  
66A 3 15 00.7 -55 07 18 1.23 18.40 21.41 N 0.981 100 43.51 - - $\rm0.28_{-0.20}^{+0.28}$ 43.63 C
67A 3 13 10.6 -55 13 13 1.22 18.27 21.69 B 0.866 111 43.85 -21.11 1.49 $\rm0.00_{-0.00}^{+0.03}$ 43.85  
68A 3 13 37.9 -55 23 03 1.77 18.28 21.80 B 0.839 111 43.82 -20.93 1.47 $\rm0.00_{-0.00}^{+0.08}$ 43.82 5
69A 3 14 15.3 -55 19 10 0.50 19.37 24.63 B 2.553 111 44.42 -20.69 1.29 $\rm 1.20_{-0.77}^{+1.21}$ 44.53  
70A 3 16 21.0 -55 06 49 1.98 19.82 23.37 - - - - - - - -  
70B 3 16 21.0 -55 06 45 3.35 18.96 22.15 N 0.844 010 - - - - -  
73A 3 13 21.2 -55 20 47 0.51 18.31 20.10 B 2.706 111 45.10 -25.31 1.81 $\rm0.00_{-0.00}^{+0.12}$ 45.10 1
75A 3 16 01.2 -55 05 16 0.50 18.96 22.86 B 2.460 111 44.64 -22.38 1.49 $\rm0.00_{-0.00}^{+0.34}$ 44.64  
76A 3 15 49.7 -55 09 08 0.16 19.06 23.21 B 1.065 111 43.69 -20.01 1.39 $\rm0.01_{-0.01}^{+0.15}$ 43.69 3
78A 3 15 02.0 -55 26 11 1.13 19.17 23.68 - - - - - - - -  
80A 3 13 59.4 -54 57 17 3.16 - - B 1.620 1 - - 44.51 - - $\rm0.00_{-0.00}^{+0.05}$ 44.51 1
81A 3 13 44.2 -55 01 52 4.16 18.86 - - - - - - - -    
83A 3 14 47.9 -55 22 31 2.33 19.46 23.68 B 1.650 111 44.27 -20.63 1.29 $\rm0.00_{-0.00}^{+0.07}$ 44.27  
83B 3 14 48.8 -55 22 30 5.51 18.40 20.70 N 0.568 010 - - - - - 3
84A 3 16 21.6 -55 20 38 1.32 18.63 23.47 B 2.094 111 44.48 -21.43 1.37 $\rm 1.32_{-0.75}^{+1.27}$ 44.64  
84B 3 16 21.9 -55 20 41 3.72 18.73 23.42 S 0.000 011 - - - - -  
88A 3 13 16.6 -55 03 10 3.31 - 20.85 B 0.739 111 43.62 -21.62 1.67 $\rm0.00_{-0.00}^{+0.03}$ 43.62  
92A 3 12 00.3 -55 02 22 1.85 - - B 2.425 1 - - 45.22 - - $\rm0.58_{-0.58}^{+0.97}$ 45.29 1
100A 3 12 43.8 -55 10 58 2.43 - - B 1.165 111 44.23 - - $\rm0.01_{-0.01}^{+0.17}$ 44.24  
104A 3 16 47.0 -55 10 33 3.80 - 23.86 - - - - - - - -  
111A 3 15 05.2 -55 29 48 2.42 - - - - - - - - - -  
116A 3 16 20.7 -55 16 52 1.30 16.99 - N 0.581 111 43.08 - - $\rm 3.63_{-1.42}^{+1.37}$ 43.72  
120A 3 13 13.5 -55 01 59 0.87 - 15.90 G 0.094 1 - - 41.46 - - $\rm0.00_{-0.00}^{+0.03}$ 41.46  
132A 3 16 14.3 -55 17 29 1.53 17.65 21.79 N 1.144 100 43.70 - - $\rm0.00_{-0.00}^{+0.18}$ 43.70  
133A 3 14 26.2 -55 21 13 1.02 - 23.54 N 2.321 110 44.25 - - $\rm0.00_{-0.00}^{+0.20}$ 44.25 C
135A 3 13 14.7 -55 26 19 5.41 - 21.95 B 2.033 111 44.79 -22.88 1.48 $\rm0.00_{-0.00}^{+0.10}$ 44.79  
140A 3 14 33.0 -55 25 18 0.91 - 21.84 - - - - - - - -  
145A 3 15 37.1 -55 17 14 1.40 16.39 19.77 N 0.497 111 42.31 - - $\rm 100_{-31}$ 44.11  
150A 3 14 29.5 -55 06 05 0.32 18.15 23.21 - - - - - - - -  
151A 3 16 50.5 -55 11 01 4.45 - - - - - - - - - - C
157A 3 16 28.0 -55 05 38 3.46 16.41 19.76 N 0.625 111 42.79 - - - -  
165A 3 15 32.2 -55 16 54 5.06 10.94 12.90 S 0.000 011 - - - - -  
166A 3 14 55.3 -55 18 15 6.85 17.91 21.45 S 0.000 011 - - - - -  
171A 3 13 51.4 -55 02 56 2.18 18.59 22.17 N 0.800 111 43.45 - - $\rm 6.31_{-2.47}^{+2.38}$ 44.14  
172A 3 16 24.3 -55 19 08 3.17 - - - - - - - - - -  
185A 3 16 50.8 -55 22 24 1.60 - - B 2.768 1 - - 44.90 - - $\rm 6.31_{-4.03}^{+7.80}$ 45.21 2
189A 3 13 25.4 -55 01 18 8.94 19.34 20.47 N 0.079 011 - - - - -  
191A 3 14 38.5 -55 20 06 2.27 15.98 17.95 B 1.045 1 - - 43.44 -25.24 2.40 $\rm 5.75_{-2.81}^{+3.83}$ 44.01 1, C
197A 3 14 27.9 -55 19 34 2.27 17.94 - - - - - - - - -  
204A 3 14 24.6 -55 02 03 1.31 18.14 21.16 G 0.859 110 43.30 - - $\rm0.03_{-0.03}^{+2.26}$ 43.32  
205A 3 13 18.9 -55 25 12 1.73 - - S 0.000 111 - - - $\rm0.00_{-0.00}^{+0.01}$ -  
205B 3 13 18.8 -55 25 07 4.20 - - S 0.000 011 - - - - -  
209A 3 16 02.2 -55 02 48 0.88 19.31 20.63 B 2.735 111 44.67 -24.79 1.90 $\rm 1.58_{-1.17}^{+2.50}$ 44.80 2
217A 3 14 19.6 -55 16 43 3.81 19.35 22.07 N 0.816 110 42.96 - - $\rm 3.63_{-1.77}^{+2.42}$ 43.51 C
217B 3 14 19.2 -55 16 37 3.66 18.00 21.32 N 0.645 010 - - - - - C
220A 3 15 50.4 -55 01 45 1.75 18.48 21.53 B 1.529 111 44.11 -22.55 1.69 $\rm0.00_{-0.00}^{+0.10}$ 44.11  
222A 3 16 43.2 -55 20 06 8.05 - - G 0.82 000 - - - - -  
223A 3 16 47.6 -55 14 11 1.37 - - N 1.304 100 44.07 - - $\rm0.28_{-0.25}^{+0.45}$ 44.16  
224A 3 13 04.9 -55 16 07 1.89 18.36 21.46 G 0.688 001 - - - - - C
224B 3 13 04.8 -55 16 04 1.70 17.48 21.51 N 0.690 111 43.48 - - $\rm 17.4_{-5.1}^{+7.9}$ 44.48 C
225A 3 13 31.7 -55 00 46 3.12 15.89 - G 0.420 011 - - - - -  
225B 3 13 32.2 -55 00 45 1.32 16.06 17.99 S 0.000 011 - - - - -  
229A 3 16 06.5 -55 14 44 4.07 - 22.23 N 0.98 001 - - - - -  
232A 3 14 41.7 -55 08 17 1.74 19.48 - B 2.520 111 44.58 - - $\rm 1.20_{-0.95}^{+16.4}$ 44.71  
241A 3 13 21.9 -55 13 51 0.95 15.81 17.56 G 0.165 111 41.85 - - $\rm0.01_{-0.01}^{+0.06}$ 41.87  
242A 3 16 04.2 -55 07 16 0.81 18.34 22.57 B 1.147 111 43.69 -20.81 1.54 $\rm0.40_{-0.25}^{+0.47}$ 43.82  
246A 3 13 56.6 -55 01 07 2.96 18.50 21.91 N 0.944 110 43.51 - - $\rm0.52_{-0.35}^{+1.77}$ 43.70  
246B 3 13 57.1 -55 01 13 4.75 20.25 22.64 N 0.688 0 - - - - - - - 6
253A 3 14 38.0 -55 06 50 2.64 18.21 21.84 N 0.517 110 42.64 - - $\rm 25.1_{-15.2}^{+28.5}$ 43.83 C
253B 3 14 38.1 -55 06 45 3.12 - 23.86 N 0.518 010 - - - - - C
255A 3 14 46.2 -55 09 52 4.28 14.66 17.51 S 0.00 011 - - - - -  
265A 3 13 36.7 -55 00 18 0.94 18.89 22.65 B 1.280 111 43.74 -21.00 1.56 $\rm0.91_{-0.90}^{+3.29}$ 43.94  
265B 3 13 37.0 -55 00 20 4.04 19.84 21.81 S 0.000 011 - - - - -  
267A 3 14 22.6 -55 17 09 2.71 18.53 22.46 B 1.495 111 43.83 -21.56 1.64 $\rm 8.32_{-4.06}^{+6.68}$ 44.37  
268A 3 16 23.8 -55 15 20 1.17 18.06 21.20 B 1.22 111 43.72 -22.34 1.79 $\rm0.00_{-0.00}^{+0.10}$ 43.72 4
268B 3 16 23.9 -55 15 21 1.68 17.82 21.20 N 0.983 010 - - - - -  
280A 3 13 24.8 -55 11 19 0.66 18.93 22.95 B 1.936 110 44.23 -21.78 1.53 $\rm 27.5_{-12.6}^{+21.1}$ 44.97 C
281A 3 15 57.7 -55 06 02 1.92 - - - - - - - - - -  
300A 3 15 01.8 -55 14 08 4.93 10.21 12.96 S 0.000 111 - - - $\rm0.00_{-0.00}^{+0.01}$ -  
308A 3 13 17.8 -55 15 52 1.71 - 22.13 - - - - - - - -  
310A 3 14 57.9 -55 13 23 3.21 18.51 22.41 B 1.01 111 43.07 -20.72 1.78 $\rm0.05_{-0.05}^{+0.20}$ 43.09  
311A 3 16 29.8 -55 11 02 3.88 18.61 - - - - - - - - -  
334A 3 16 31.6 -55 12 27 0.70 19.32 20.17 B 2.536 1 - - 44.73 -25.13 1.93 $\rm0.52_{-0.52}^{+0.69}$ 44.79 2, 3
335A 3 13 57.3 -55 04 32 0.91 15.96 17.97 N 0.257 111 41.93 - - $\rm 1.91_{-0.96}^{+1.77}$ 42.54  
345A 3 13 16.6 -55 22 38 0.84 - 21.61 B 2.166 111 44.88 -23.36 1.54 $\rm0.00_{-0.00}^{+0.10}$ 44.88  
360A 3 13 11.7 -55 17 18 2.36 20.02 - B 2.166 111 44.49 - - $\rm0.14_{-0.14}^{+0.90}$ 44.51  
361A 3 13 14.6 -55 03 18 2.03 - 20.03 B 1.648 111 44.20 -24.28 1.96 $\rm 12.0_{-6.4}^{+9.7}$ 44.80  
364A 3 14 12.0 -55 25 56 1.82 - 21.10 B 1.821 1 - - 44.39 -23.48 1.75 $\rm0.23_{-0.23}^{+0.36}$ 44.45 2, 3
367A 3 16 34.8 -55 03 49 3.92 - 21.08 B 0.981 1 - - 43.97 -21.99 1.61 $\rm 2.29_{-1.46}^{+1.97}$ 44.37 2
371A 3 16 20.5 -55 03 33 3.16 - 21.25 N 0.802 110 43.23 - - $\rm 33.1_{-10.6}^{+20.5}$ 44.37  
373A 3 15 02.3 -55 05 07 2.53 - 23.69 B 0.953 101 43.24 -19.33 1.45 $\rm0.00_{-0.00}^{+0.06}$ 43.24  
373B 3 15 02.5 -55 05 02 6.11 - 21.87 N 0.573 010 - - - - -  
377A 3 16 53.4 -55 08 38 0.81 - 22.91 - - - - - - - -  
381A 3 16 44.3 -55 27 08 2.93 - 19.34 B 1.879 1 - - 45.01 -25.32 1.80 $\rm0.00_{-0.00}^{+0.07}$ 45.01 1
382A 3 12 47.3 -55 16 51 1.46 19.83 20.63 B 1.904 111 44.57 -24.07 1.78 $\rm0.00_{-0.00}^{+0.04}$ 44.57 C
388A 3 14 01.3 -54 59 56 0.72 17.27 19.99 B 0.841 1 - - 44.74 -22.75 1.39 $\rm0.00_{-0.00}^{+0.01}$ 44.74 1
408A 3 15 54.6 -55 10 04 4.12 19.92 23.40 - - - - - - - -  
410A 3 15 02.4 -55 27 45 4.21 11.01 14.68 S 0.000 111 - - - $\rm0.00_{-0.00}^{+0.01}$ -  
422A 3 15 31.6 -55 10 45 4.79 17.22 21.04 N 0.476 111 42.50 - - $\rm 3.98_{-1.61}^{+2.46}$ 43.21  
437A 3 15 33.7 -55 02 58 2.33 20.22 21.78 S 0.00 111 - - - $\rm0.01_{-0.01}^{+0.05}$ -  
449A 3 15 43.8 -55 07 42 4.28 18.62 - B 1.204 111 43.47 - - $\rm 7.59_{-4.04}^{+6.10}$ 44.08 3
462A 3 15 06.0 -55 16 24 1.99 18.75 - - - - - - - - -  
463A 3 16 25.3 -55 08 39 0.55 19.07 - N 2.531 111 44.41 - - $\rm 3.63_{-2.20}^{+4.27}$ 44.66  
473A 3 15 32.2 -55 11 22 6.40 - 21.64 S 0.000 011 - - - $\rm0.01_{-0.01}^{+0.05}$ -  
473B 3 15 32.9 -55 11 27 11.67 - 17.22 G 0.154 0 - - - - - - - 7
475A 3 13 52.4 -55 03 46 1.77 20.20 23.97 B 1.729 111 44.07 -20.48 1.36 $\rm0.10_{-0.10}^{+0.43}$ 44.10  
480A 3 16 53.2 -55 12 32 2.52 - 22.47 N 0.921 100 43.52 - - $\rm 4.79_{-2.34}^{+3.85}$ 44.12  
485A 3 15 27.1 -55 16 14 4.69 17.75 22.85 N 1.263 100 43.33 - - $\rm 27.5_{-15.1}^{+72.5}$ 44.25  
496A 3 12 45.4 -55 16 48 1.38 - 19.74 B 1.906 111 44.63 -24.96 1.91 $\rm0.00_{-0.00}^{+0.14}$ 44.63 C
498A 3 15 06.1 -55 14 00 1.09 11.83 13.65 S 0.00 111 - - - $\rm0.01_{-0.01}^{+0.06}$ -  
511A 3 15 28.0 -55 13 14 0.92 19.88 22.58 B 2.623 111 44.22 -22.79 1.75 $\rm0.00_{-0.00}^{+0.30}$ 44.22  
512A 3 13 48.2 -55 13 09 1.12 17.90 - N 0.465 110 42.83 - - $\rm 1.91_{-1.02}^{+1.53}$ 43.36 C
512B 3 13 48.3 -55 13 05 3.57 15.92 - N 0.584 0 - - - - - - - 3, C
518A 3 14 57.0 -55 29 25 2.01 - 21.53 - - - - - - - -  
524A 3 13 14.1 -55 04 16 3.54 - 20.46 S 0.000 011 - - - - -  
531A 3 13 38.2 -55 03 51 1.12 18.31 - B 0.926 111 44.15 - - $\rm0.00_{-0.00}^{+0.01}$ 44.15  
535A 3 16 53.5 -55 11 52 1.51 - 21.81 B 0.974 101 43.43 -21.25 1.71 $\rm0.44_{-0.31}^{+0.58}$ 43.60  
536A 3 14 50.7 -55 04 10 3.47 - 22.41 N 0.333 111 41.92 - - - -  
543A 3 12 50.3 -55 11 00 0.56 19.85 - B 2.511 111 44.44 - - - -  
551A 3 12 43.3 -55 12 01 3.16 - - S 0.000 011 - - - - -  
551B 3 12 43.0 -55 11 58 1.20 - - B 0.789 111 43.48 - - $\rm0.00_{-0.00}^{+0.20}$ 43.48  
557A 3 14 41.4 -55 21 37 1.27 15.42 18.07 G 0.16 111 41.26 - - $\rm0.00_{-0.00}^{+0.02}$ 41.26  
559A 3 16 17.3 -55 14 29 0.99 17.95 21.95 B 1.180 1 - - 43.82 -21.51 1.60 $\rm0.00_{-0.00}^{+0.02}$ 43.82 3
579A 3 15 47.3 -55 14 19 0.88 18.01 20.84 N 0.497 110 42.43 - - $\rm0.23_{-0.12}^{+0.18}$ 42.60  
582A 3 16 30.5 -55 11 30 0.89 17.23 21.32 S 0.000 111 - - - $\rm0.04_{-0.04}^{+0.06}$    
585A 3 13 09.3 -55 11 40 1.80 19.23 23.82 B 1.383 111 44.29 -20.01 1.16 $\rm0.01_{-0.01}^{+0.20}$ 44.30  
593A 3 15 11.2 -55 12 02 1.16 18.61 22.12 B 0.964 111 43.19 -20.92 1.75 $\rm0.00_{-0.00}^{+0.13}$ 43.19  
607A 3 16 51.2 -55 13 06 0.22 - 19.83 N 0.407 110 42.87 - - $\rm0.00_{-0.00}^{+0.01}$ 42.87 C
608A 3 13 49.7 -55 12 59 0.57 17.67 22.46 N 1.019 100 43.58 - - $\rm0.14_{-0.14}^{+0.24}$ 43.64 4
610A 3 15 51.8 -55 12 22 1.25 17.64 21.12 N 0.699 111 43.10 - - $\rm 8.32_{-2.45}^{+3.14}$ 43.90  
615A 3 14 59.5 -55 03 57 1.75 19.15 22.77 B 1.355 101 43.99 -21.01 1.46 $\rm0.00_{-0.00}^{+0.06}$ 43.99 C
615B 3 15 00.2 -55 03 53 5.00 17.08 19.23 N 0.096 011 - - - - - 3, C
631A 3 15 32.7 -55 12 00 0.89 19.65 - - - - - - - - -  
632A 3 16 24.6 -55 21 33 2.07 18.97 23.29 ? - 000 - - - - - C
632B 3 16 24.7 -55 21 44 9.08 19.04 22.93 N 0.987 011 - - - - -  
652A 3 15 30.3 -55 04 37 0.52 18.56 20.75 B 2.710 111 45.14 -24.66 1.68 $\rm0.00_{-0.00}^{+0.20}$ 45.14 3
653A 3 16 47.4 -55 12 31 1.38 - 23.38 - - - - - - - - 4, C
654A 3 17 05.7 -55 27 18 3.54 - - B 2.105 1 - - 45.26 - - $\rm0.33_{-0.33}^{+0.44}$ 45.32 1
656A 3 13 26.1 -55 04 25 1.36 15.35 18.37 N 0.166 111 42.64 - - $\rm0.91_{-0.32}^{+0.34}$ 43.13  
664A 3 16 10.0 -55 21 20 9.50 18.31 22.60 - - - - - - - -  
664B 3 16 11.0 -55 21 22 5.17 - - - - - - - - - -  
673A 3 15 40.3 -55 12 21 0.65 18.76 22.00 B 1.062 111 44.03 -21.21 1.45 $\rm0.40_{-0.19}^{+0.29}$ 44.18 3
675A 3 16 24.6 -55 11 44 0.66 19.14 21.82 B 1.140 1 - - 44.06 -21.55 1.50 $\rm0.00_{-0.00}^{+0.06}$ 44.06 3
686A 3 13 46.6 -55 11 49 0.67 17.08 19.11 B 1.663 111 45.44 -25.23 1.58 $\rm0.00_{-0.00}^{+0.03}$ 45.44 1, 3, 5
687A 3 13 02.6 -55 26 08 4.54 - 18.83 S 0.000 011 - - - - -  


151A: Probably a spurious detection of the X-ray source. The source is kept in the source list for the formal reason of having an ML = 5.2, but is not considered further.

191A: Optical spectrum in Zitelli et al. (1992) indicates a type I AGN with typical broad emission lines. However, this object shows the lowest X-ray-to-optical flux ratio of all AGN in our sample. $f_{\rm {X}}/f_{\rm {opt}}=0.04$ suggests an X-ray faint AGN. Since this object was not detected by ROSAT, it is unlikely that the extreme $f_{\rm {X}}/f_{\rm {opt}}$-ratio is due to a temporary low X-ray state of the object. Furthermore, it is one of the type I objects with intrinsic absorption ( $N_{\rm {H}}=(5.75_{-2.81}^{+3.83})\times 10^{22}$ cm-2).

217A and 217B: X-ray blend, the identification of 217A with the southeastern component seems unambiguous, the identification of 217B with the northwestern component is not unique, since a similarly bright, close-by, but still unidentified object is present at the same distance from the X-ray source.

224A and 224B: Two galaxies at equal redshift, no obvious X-ray extent.

253A and 253B: Two objects at similar redshift with $2~{\rm mag}$ difference in the optical. The brighter object 253A is regarded as the identification.

280A: Object is classified as "B'' since C III is well resolved with $\Delta \lambda \sim 72~ \AA$ (FWHM). Ly-$\alpha$ and C IV are narrow emision lines, but show strong absorption with broad underlying components. The classification flag is set "0''. Possible broad absorption line quasar.

361A: Broad absorption line quasar.

382A and 496A: Physical quasar pair, separated by $17\hbox{$^{\prime\prime}$ }$, at z = 1.904, $d_{\rm {A}} = 143$ kpc. The spectra are different, i.e., the two objects are not lensed images of the same source.

437A: Spectrum, optical, and X-ray image, and relative soft hardness ratios point undoubtedly to an M star as X-ray source. However, a flux ratio $f_{\rm {X}}/f_{\rm {opt}}=1.7$ is unusually high for an M star as the X-ray identification.

512A and 512B: Zamorani et al. (1999) identify the NELG 512B with the X-ray source. The $2~{\rm mag}$ fainter NELG 512A lies somewhat closer to the X-ray position. While both galaxies may contribute to the observed X-ray flux, we assume object 512A as the counterpart in the following.

582A: Spectrum, optical, and X-ray image, and relative soft hardness ratios point undoubtedly to an M star as X-ray source. However, a flux ratio $f_{\rm {X}}/f_{\rm {opt}}=1.5$ is unusually high for an M star as the X-ray identification.

607A and 653A: Detected as a single X-ray source by ROSAT Zamorani et al. (1999) X404-23, X-ray source 653 is brighter and closer to X404-23 and, therefore, treated as the detected ROSAT X-ray source. The broad spectral feature at 7100$~\AA$ in the optical spectrum of 607A is spurious due to the zeroth order light of the neighbouring slit.

615A and 615B: Both objects, the broad emission line object 615A and the narrow emission line object 615B, are possible counterparts to the X-ray source. We regard the fainter, but positionally better matching object 615A as the counterpart.

632A: Spectrum suggests a BL-Lac object, but the object is not a radio source, classification unclear.

   
3.2 Discussion of spurious matches

Since type I AGN are a well-established class of X-ray emitters with relatively low surface density, false matches should not play any role for this object class. However, when investigating the classes of optically normal and narrow emission line galaxies, the problem of false matches has to be taken into account due to the high surface densities of these objects. To check the quality of our optical X-ray counterpart identification, we applied various tests.

First, the derived false match rate will depend on the assumed position errors, which take into account the statistical and the systematic position error (see Sect. 2.3). The difference in X-ray and optical position scaled to a $1\sigma _{\rm {X}}$position error is shown in Fig. 10a. When we assume systematic errors of 2 arcsec, the theoretical Gaussian distribution (Eq. (7))

 
$\displaystyle f(r_{\rm {n}}) = N_{\rm {tot}} ~ r_{\rm {n}} {\rm e}^{-\frac{1}{2}r_{\rm {n}}^2} ~~,~~r_{\rm {n}}=\frac{r_{\rm {X}}-r_{\rm {O}}}{\sigma_{\rm {X}}}$     (7)

peaks significantly later than the observed distribution of the X-ray counterparts. This is not due to the fact that we systematically accepted spurious counterparts sources, since the type I AGN distribution (shown with dotted lines in Fig. 10) is consistent with the total X-ray identification distribution. The fact that we have a large number of type I AGN allows us to estimate the actual systematic position error for our X-ray observation. The observed distribution of the type I AGN position errors can be well reproduced with a systematic error of $\sigma_{\rm {syst.}} =0.7\hbox{$^{\prime\prime}$ }$ (Fig. 10b). Moreover, the distribution of normalised position differences for the total sample agrees well with the theoretical distribution and with the type I AGN distribution when we apply $\sigma_{\rm {syst.}} =0.7\hbox{$^{\prime\prime}$ }$.

Considering $\sigma_{\rm {syst.}} =0.7\hbox{$^{\prime\prime}$ }$, we calculate the false match rate by following Sutherland & Saunders (1992) and Ciliegi et al. (2003). For every spectroscopically classified counterpart we determine the likelihood ratio L by

$\displaystyle L=\frac{Q~\exp(-dist_{\rm {OX}}^2/2)}{2\pi \sigma_{\rm {X}}^2 N({<}m_{\rm {R}})},$     (8)

where L is the probability of finding the true optical counterpart in this position with this magnitude, relative to that of finding a similar chance background object. Hence, the reliability of a counterpart is given by $P_{\rm true}=L/(1+L)$. Q is the probability that the counterpart of the X-ray source is brighter than the limit of the optical survey and has been set here to Q=0.5. $N({<}m_{\rm {R}})$ is the number density of catalogue objects of the relevant class brighter than the counterpart. For narrow emission line counterparts we assumed that about one-third of the field galaxies show line emission detectable in our spectra (Kennicutt 1992). We therefore derive the density of background objects $N({<}m_{\rm {R}})$ by multiplying the total number of objects ${<}m_{\rm {R}}$ in the optical catalogue by a factor 0.33. For normal galaxies a factor of 0.67 was applied accordingly.

The total number of false matches can then be calculated by adding up all probabilities $P_{\rm sp} = 1/(1+L)$that the counterpart is spurious. Statistically, $\sim$25% of our narrow emission line galaxy are spurious counterparts. However, after visually examining objects with low probabilities $P_{\rm true}$, we find that in at least two cases (422A, 485A) the X-ray position given by the source detection software is influenced by blending with another X-ray source and the counterparts are consistent with the peak of the brighter X-ray source (see Appendix C, finding chart). Taking this into account, we estimate that the false match rate is $\sim$20% for the sample of type II AGN. For the optically normal galaxies the false match rate calculated with the likelihood method is $\sim$2%.

As a further quality check we plot the position error vs. WFI R-band magnitude. False matches would be recognisable due to different distributions of the type I and type II counterparts in this diagram. However, Fig. 11 shows that all object classes occupy the same regions in the diagram. Hence, the diagram does not indicate any serious contamination by false matches even for faint counterparts.

3.3 Classification summary

In total, we spectroscopically classified 140 of the optically identified X-ray sources. Details are shown in Table 4. Like in other deep surveys, e.g., Hasinger et al. (2001), the majority of the X-ray counterparts ($\sim$90%) are related to the accretion on supermassive black holes (type I and type II AGN). Furthermore, we classified a few galaxies and stars as optical counterparts (see Table 5).

  
4 Properties of a core sample of the XMM-Newton Marano survey

Our survey suffers somewhat from incomplete optical coverage of the X-ray survey area and, hence, a low identification rate over the whole area. To reach conclusions for the survey of a certain statistical significance we constrain our survey area and sample size to the central 0.28 deg2 with a pn-exposure >6 ks and significance of detection of individual sources with ML >10. We refer to this as the "core sample''. See Fig. 2 for the definition of the core region. Note that the maximum exposure is 35.5 ks for the PN camera and 78 ks for each of the MOS cameras.

The core sample contains 170 X-ray sources (ML>10). No optical data are available for six out of the 170 X-ray sources which fall outside the WFI R-band image and are also not covered by VLT pre-images. A further six X-ray sources from the core sample have no optical detection in the WFI R-band image in a 3 $\sigma _{\rm {X}}$ position error circle ( $\sigma_{\rm {syst.}} =0.7\hbox{$^{\prime\prime}$ }$). 122 X-ray sources are new detections, while 35 are spectroscopically classified ROSAT X-ray sources, and 13 are optically unidentified ROSAT sources. Out of the 140 spectroscopically classified objects in the Marano Field, 110 are associated with X-ray sources of the core sample. A summary of the properties of the core sample is given in Table 6.

Figure 12 shows R-band magnitude histograms of the core sample X-ray sources that were spectroscopically classified and only optically identified, respectively. The ( $f_{\rm {X}}$, ML)-distribution of X-ray sources in the core region is given in Fig. 13. The identification ratio of the core sample is 65%. In the next subsections we always refer to this sample.


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_12.ps} \end{figure} Figure 12: WFI R-band magnitude histogram for the core sample in the XMM-Newton Marano Field survey. The solid line represents the R-magnitude distribution of the spectroscopically classified X-ray counterparts. The dashed line shows the distribution of the optically identified but not spectroscopically classified X-ray counterparts. Six X-ray sources, which have no counterpart within a 3 $\sigma _{\rm {X}}$ error circle, are assigned to the bin at R=25.


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_13.ps} \end{figure} Figure 13: Likelihood vs. 0.2-10 keV X-ray-flux of the 252 central X-ray sources (pn-detector exposure time $\ge $6 ks). Crosses mark type I AGN, asterisks type II AGN, triangle galaxies, and rectangles stars. Dots indicate X-ray sources with no spectroscopic classification. The vertical line indicates ML = 10.

   
4.1 X-ray properties

Characterising X-ray sources only by the X-ray properties can be used to reveal and study the existence of different X-ray populations and their features. Hardness ratios (see Sect. 2.1) are the simplest tool to determine the spectral energy distribution in the X-ray regime. In Fig. 14 (HR2 vs. HR3) we only plot those X-ray sources in an X-ray colour-colour diagram that have the HR2 error $\sigma_{\rm {HR2}} \le 0.3$. The different spectroscopically classified classes occupy different regions in this X-ray colour-colour diagram. A noticable separation in type I and type II AGN can be recognised. This result is in agreement with Mainieri et al. (2002) and Caccianiga et al. (2004). Type II AGN spread over a much broader HR2 ( 0.9>HR2>-0.6). The lowest HR2 values for type II AGN overlap with the highest HR2 values for type I AGN. However, we do not see a large fraction of type II AGN occupying the HR2 range typical for type I AGN, as was reported by Della Ceca (2004) for the XMM-Newton bright serendipitous survey. Figure 14 shows that HR2 is a good indicator for intrinsic absorption. The X-ray sources with HR3 = -1.0 correspond to non-detections in the 4.5-7.5 keV band. The objects with HR3 > 0.4 and soft HR2 values have HR3 errors $ \geq $0.3 (small plot symbols). Therefore, it is likely that their deviation from the typical location of sources in the HR2-HR3 diagram is caused by statistical fluctuations.
  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_14.ps} \end{figure} Figure 14: X-ray diagnostic diagram based on hardness ratios. HR2 is calculated by using the 0.5-2.0 keV and 2.0-4.5 keV band, HR3 2.0-4.5 keV and 4.5-7.5 keV. Only X-ray sources that have $\sigma _{\rm {HR2}} < 0.3$ are plotted. Labels: crosses - 63 type I AGN, asterisks - 24 type II AGN, triangles - 4 galaxies, and open circles - 24 unidentified X-ray sources with ML > 10. Large symbols represent objects with $\sigma _{\rm {HR3}} < 0.3$, small symbols $\sigma _{\rm {HR3}} \ge 0.3$. The solid line with box symbols (at $HR2\sim HR3\sim -0.5$) represents an unabsorbed power-law X-ray spectrum (corrected for galactic absorption) with different photon index $\Gamma =2.4{-}1.2$ in steps of 0.2 (squares). Different hydrogen column densities ( $N_{\rm {H}}$/cm $^{-2}= 10^{20},10^{22},3\times 10^{22},10^{23},3\times 10^{23},10^{24}$; see Sect. 4.4) are plotted as a solid line with diamonds for $\Gamma =2$ and z=1.

The small number of optically normal galaxies span a large range in HR2. Two have HR2 values that belong to the softest in the whole core sample. The other two have X-ray spectra similar to those of soft type II AGN or very hard type I AGN.

In addition to the spectroscopically classified objects, we also plot unidentified objects from the core region. Out of the 60 total unidentified X-ray sources, only 24 meet the selection criterion of $\sigma_{\rm {HR2}} \le 0.3$. Based on the rather clear separation between type I and II AGN, one may assign a likely classification to the yet unidentified sources. Among the 24 unidentified sources with reliable X-ray colours, the numbers of type I and type II AGN candidates appear to be similar.

   
4.2 Redshift distribution


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_15.ps} \end{figure} Figure 15: Redshift distribution of AGN in the Marano Field. a) Complete sample of 64 optically selected quasars ( $B_{{\rm J}} \leq 22.0$) by Zitelli et al. (1992); b) ROSAT X-ray sources (29 type I AGN by Zamorani et al. 1999); c) 35 type I AGN newly detected by XMM-Newton (core region); d) redshift distribution of the core sample: dotted line: all 70 XMM-Newton detected type I AGN, solid line: 31 XMM-Newton detected type II AGN, and dashed line: 5 XMM-Newton detected optically normal galaxies.

Previous extensive studies of AGN in the Marano Field enable us to compare these samples with our XMM-Newton detections. The optical survey by Zitelli et al. (1992) covers $\sim$0.7  ${\rm deg}^2$. The selected quasars, which are all of type I, show an almost flat distribution in redshift (Fig. 15a) up to z=2.8. The ROSAT $0.2~{\rm deg}^2$ survey in the field (Zamorani et al. 1999) recovered most of the optically selected quasars at redshifts up to $z\sim 1.4$ (Fig. 15b). The newly detected ROSAT AGN, with few exceptions, are type I AGN, which is expected due to the limited capability of ROSAT to detect absorbed sources.

In the $0.28~{\rm deg}^2$ core region of the XMM-survey we have detected 23 of the 29 broad emission line quasars of the optically selected sample of Zitelli et al. (1992). The detection rate of optically selected quasars remains constantly high over all redshifts. However, looking at the type I AGN newly discovered with XMM-Newton (Fig. 15c), it is apparent that the X-ray selection tends to detect quasars at lower redshifts than the optical surveys. This is particularly obvious from the redshift distribution of the ROSAT detected quasars, representing the brightest X-ray sources in the field. But the mean redshift $z \sim 1.3$ of the XMM-Newton detected type I AGN is also lower than that of the optically selected sample $z \sim 1.5$, despite the fact that the XMM-Newton-observations are deeper in terms of the surface density of quasars than the optical survey. Possible reasons for these differences are discussed in Sect. 6.


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_16.ps} \end{figure} Figure 16: Observed X-ray luminosity (0.2-10 keV) vs. redshift. Labels: crosses - 70 type I AGN, asterisks - 30 type II AGN, and triangles - 5 galaxies.


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_17.ps} \end{figure} Figure 17: Observed X-ray luminosity (0.2-10 keV) vs. hardness ratio. HR2 is calculated by using 0.5-2.0 keV & 2.0-4.5 keV bands. Only X-ray sources that have $\sigma _{\rm {HR2}} < 0.3$ are plotted. Labels: crosses - 63 type I AGN, asterisks - 24 type II AGN (grey marked have $z \ge 2.0$), and triangles - 4 galaxies. The diagram separation into different regions is based on Szokoly (2004) with an adjusted threshold in the HR2-value.

The redshift distribution according to object class of the XMM-Newton detected core sample is given in Fig. 15d. We find that almost half of the new XMM-Newton sources are classified as type II AGN with redshifts mostly below 1.0. Type I AGN extend over a wide range of redshifts with a maximum at $z\sim0.8{-}1.4$. Type II AGN are comparable to type I AGN in number density at low redshifts, but are mostly found below z=1. Five type II quasars at z > 2.2 have been identified. Optically normal galaxies without emission lines are found at z < 0.9.

4.3 Observed X-ray luminosity

For the X-ray sources with measured redshifts X-ray luminosities can be computed. The coverage of the survey in redshift - X-ray luminosity space is plotted in Fig. 16. Szokoly (2004) showed that the different object classes identified in X-ray surveys occupy different regions in a diagram of hardness ratios versus observed X-ray luminosities. In Fig. 17 we follow a scheme similar to that adopted by Szokoly (2004) and consider objects with an X-ray luminosity log $(L_{\rm {X}}) \ge 44.0$ as quasars (QSOs). The majority of type I AGN ($\sim$70%) are actually type I QSOs. Most of type II AGN ($\sim$71%) are low X-ray luminosity objects. Only type II objects with redshifts $z \ge 2.0$ (marked in grey in Fig. 17) have X-ray luminosities of type II QSOs.

High-redshift type II QSOs with intrinsic absorption are found to be indistiguishable from non-absorbed type I AGN on the basis of their X-ray spectral hardness ratios, since the absorbed part of the spectrum is shifted out of the observable spectral window towards lower energies. This explains the emptiness of the upper right corner of Fig. 17 labelled "type II QSO'', a classification that applies to low redshift objects only.

Optically normal galaxies vary clearly in X-ray luminosity. The HR2-soft objects have very low X-ray luminosities. The two HR2-hard normal galaxies are found in the same region as the softest type II AGN, but are harder than type I AGN.

Szokoly (2004) use HR2=-0.2 as a threshold for the separation of type I and type II objects. Assuming a $\Gamma =2$, this value corresponds to a hydrogen column density $N_{\rm {H}}$/cm -2=1022, 1023 for z= 0.25 and 2.1, respectively. For their CHANDRA observation they computed $L_{\rm {X}}$ in the 0.5-10 keV band and their hardness ratio was based on the 0.5-2 keV and 2-10 keV bands. Because their definition of the X-ray bands differs from our study, the majority of their objects have higher hardness ratios (compared to our HR2). Furthermore, the XMM-Newton pn-detector, which was used for calculating the hardness ratios, has a higher efficiency in the 0.5-2 keV band compared to the CHANDRA detector. Therefore, we lowered the HR2 threshold from HR2 = -0.2 in Szokoly (2004) to HR2 = -0.45. Our threshold corresponds to $N_{\rm {H}}$/cm $^{-2}=0.54\times 10^{22}, 1.7\times 10^{22}$, and $5.4\times
10^{22}$ for $\Gamma =2$ and z= 0.25, 1, and 2.1. This is about two times lower than the $N_{\rm {H}}$ cutoff Szokoly (2004) are using.

   
4.4 N $_{\rm {H}}$ column densities and corrected X-ray luminosities

The hardness ratio diagram (Fig. 14) supports the view that the majority of type II AGN and a small fraction of type I AGN are obscured sources. Hence, the observed X-ray luminosity does not represent the intrinsic object X-ray luminosity. The significant deficit of soft photons as compared to a power-law spectrum reflects the existence of an absorbing component that is expressed by the hydrogen column density $N_{\rm {H}}$. For most of the sources the number of detected counts is not sufficient to extract a spectrum and fit a power-law model with $N_{\rm {H}}$and the photon index $\Gamma$ as free parameters. We, therefore, applied a technique that uses the measured hardness ratios to calculate the $N_{\rm {H}}$value for each source with a set of fixed power-law indices. Mainieri et al. (2002) found a mean value of $\langle\Gamma \rangle\simeq 2$ for 61 type I and type II AGN in the Lockman Hole. The majority of type I and II AGN are found in the range of $\Gamma\simeq 1.7{-}2.3$. The finding is confirmed by Mateos (2005). They find $\langle\Gamma \rangle= 1.92$ with a $\sigma =0.28$. Therefore, we use the observed pn-, mos1-, and mos2-hardness-ratios (0.2-0.5 keV, 0.5-2.0 keV, 2.0-4.5 keV, and 4.5-7.5 keV) and performed three runs to determine $N_{\rm {H}}$ with the values $\Gamma= 1.7, 2.0$, and 2.3 for all objects.

First of all, we computed a grid of model hardness ratios for all EPIC instruments with Xspec (using the models wabs, zwabs, and powerlaw). As input the galactic absorption in the line of sight in the field with $N_{\rm {H}} = 2.7 \times 10^{20}$ cm-2, the redshift of the object and a grid of hydrogen column densities ( $N_{\rm {H}}=0,~ N_{\rm {H}} = 10^{20+0.04~a}\ {\rm cm^{-2}},\ \ a \in
N_{\rm {0}},\ \ a=0..100$) is used. We then computed the $\chi^2$ values for the deviations of the measured hardness ratios and their model values, summed over the three instruments and the three hardness ratios HR1, HR2, and HR3. The procedure was applied only to those sources that had at least five out of nine hardness ratios with $\sigma HR_{\rm {obs,i}} < 0.7$.

The $N_{\rm {H}}$ of a source is determined by finding the minimum of


\begin{displaymath}\chi^2(N_{\rm {H}})=\sum_i\frac{(HR_{\rm {obs,i}}-HR_{\rm {model,i}}(N_{\rm {H}}))^2}{\sigma
HR_{\rm {obs,i}}^2}\cdot\end{displaymath}

The models are based on the photon index $\Gamma =2$. The statistical 1$\sigma$ errors were derived from the range in $N_{\rm {H}}$, where $\chi^2 < \chi^2_{\rm min}+1$ (Lampton et al. 1976). For the error calculation we also took into account an intrinsic scatter in the photon indices. Its contribution to the $N_{\rm {H}}$ error was measured by finding the minimum $\chi^2$ for each source in the grids calculated using $\Gamma= 1.7$ and $\Gamma= 2.3$. The resulting systematic errors were quadratically added to the statistical errors. The $N_{\rm {H}}$ values and the total errors are given in Table 8. Due to the uncertainties in the $N_{\rm {H}}$ determination we regard all values with $N_{\rm {H}} \leq 10^{21}~{\rm cm^{-2}}$ as consistent with unabsorbed spectra.

We tested our procedure by performing an individual Xspec $N_{\rm {H}}$-fit for the brightest type II AGN, which has sufficient X-ray data quality. The hardness ratios of 32A (z=2.727) indicate the highest absorption among the brightest type II AGN. A spectral fit with wabs, zwabs, powerlaw, and $\Gamma$ as a free parameter determined $N_{\rm {H_{32A}}}=(10.0 \pm 3.5) \times 10^{22}~{\rm cm^{-2}}$ and $\Gamma_{\rm {32A}}=(1.7 \pm 0.3$). The best fit $N_{\rm {H}}$, for a fixed value of $\Gamma= 1.7$, with the hardness-ratio $\chi^2$-minimum fit is $N_{\rm {H_{32A}}}=(7.5_{-2.8}^{+3.4}) \times 10^{22}~{\rm cm^{-2}}$. A spectral fit with a fixed $\Gamma_{\rm {32A}}=2.0$ results in $N_{\rm {H_{32A}}}=(13.4 \pm 2.5) \times 10^{22}~{\rm cm^{-2}}$. The given $N_{\rm {H}}$ in Table 8 was performed with the hardness-ratio $\chi^2$-minimum fit and finds $N_{\rm {H_{32A}}}=(14.5_{-8.2}^{+7.9}) \times 10^{22}~{\rm cm^{-2}}$. Hence, both fit methods give comparable results, at least for high SNR sources.

Figure 18 shows the computed hydrogen column densities for type II AGN and optically normal galaxies.

  \begin{figure}
\par\includegraphics[width=8cm,clip]{5849_18.ps} \end{figure} Figure 18: Calculated intrinsic hydrogen column density histogram for the central Marano Field. The solid line shows the distribution of type II AGN that have reasonable fits in hydrogen column density. Objects with $N_{\rm {H}}=0$ are set to $N_{\rm{H}}=5 \times 10^{19}~{\rm cm^{-2}}$. The dotted line represents only type II AGN that show intrinsic absorption with a significance higher than $2 \sigma $ in hydrogen column density. Optically normal galaxies are plotted as a dashed line. Dotted line - 14 type I AGN; solid line - 30 type II AGN; dashed line - 5 galaxies.

As expected, the majority of type II AGN shows absorption. However, 13% of the type II objects (51A, 132A, 133A, and 607A) have absorbing column densities $N_{\rm {H}} < 10^{21}~{\rm cm}^{-2}$. All of the type II AGN discovered by Mainieri et al. (2002) in the Lockman Hole have absorbed X-ray spectra. The values for optically normal galaxies range from unabsorbed to moderately absorbed. Two of the unabsorbed galaxies have low X-ray luminosities ( $L_{\rm X} < 10^{42}~{\rm erg~s^{-1}}$).


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_19.ps} \end{figure} Figure 19: a) Histogram of the absorbed (observed) X-ray luminosity (0.2-10 keV) for the core sample. Dotted line - 70 type I AGN, solid line - 30 type II AGN, and dashed line - 5 galaxies. b) Histogram of the X-ray luminosity (0.2-10 keV) corrected for intrinsic absorption (core sample). Same notation as in a). c) Corrected X-ray luminosity (0.2-10 keV) vs. hydrogen column density (core sample). Crosses - type I AGN, asterisks - type II AGN, and triangles - galaxies. The upper right corner is suggested as being defined as the "type II QSO region'' by Mainieri et al. (2002). Objects with $N_{\rm {H}}=0$ are set to $N_{\rm{H}}=5 \times 10^{19}~{\rm cm^{-2}}$.

The computed hydrogen column density of type II AGN object 145A is the highest in our sample ( $N_{\rm {H}} = 10^{24}~{\rm cm}^{-2}$). Since this corresponds to the highest value in the model grid, no reliable error estimate can be given for this object. However, the extremely high column density for this object is confirmed by the fact that it is one of the few sources detected in the 4.5-7.5 keV EPIC images, but it is not visible in the softer bands.

Based on the hydrogen column densities, we calculated the unabsorbed (intrinsic) X-ray luminosities by computing a correction factor for the observed X-ray flux. Figure 19 shows the comparison of the absorbed (a) and unabsorbed (b) X-ray luminosity distributions. Even after correcting the X-ray luminosity, type II AGN have lower median X-ray luminosities than type I AGN, although type I and II AGN cover the same X-ray luminosity range. In contrary to the almost flat distribution of type II AGN with a median of $L_{\rm {X}}\sim 10^{44} {\rm ~erg~s^{-1}}$, type I AGN show a significant peak at $L_{\rm {X}}\sim 10^{44.4} {\rm ~erg~s^{-1}}$in observed and intrinsic X-ray luminosity. Type I AGN 5A exhibits the highest X-ray luminosity in our sample.

The hydrogen column density as a function of the intrinsic X-ray luminosity is shown in Fig. 19c. Mainieri et al. (2002) suggest labelling the region defined by $N_{\rm {H}} > 10^{22}~{\rm cm}^{-2}$ and $L_{\rm {X}} > 10^{44} ~{\rm erg~s^{-1}}$as the "type II QSO region''. They proposed this classification based on 61 AGN identified from XMM-Newton sources in the Lockman Hole. Following this classification our sample includes 10 type II QSOs.

In our case this region of the plot is also populated by nine type I QSOs, which formally have intrinsic hydrogen column densities $N_{\rm {H}} > 10^{22}~{\rm cm}^{-2}$. However, most of these detections of intrinsic $N_{\rm {H}}$ have low significance; only four of all type I QSOs show absorption at the $2 \sigma $ level (see Table 7). For about half of the type II AGN, significant intrinsic absorption ( $N_{\rm {H}}> 2\times \Delta N_{\rm {H}}$) was measured, and no dependence of the absorbed fraction on luminosity is evident (Table 7).

4.5 X-ray to optical flux ratios

The ratio between X-ray flux and optical flux ( $f_{\rm {X}}/f_{\rm {opt}}$) is used in former deep X-ray surveys to characterise the different X-ray emitting classes (; Mainieri et al. 2002). To calculate $f_{\rm {X}}/f_{\rm {opt}}$ values we derived optical fluxes in a band centred at $7000~\AA$and width $1000~\AA$ using the equation $f_{\rm {opt}}=10^{-0.4 R - 5.759}$ (Zombeck 1990). As X-ray fluxes we used the 0.2-10 $~{\rm ~keV}$ values (see Sect. 2.1).

The distribution of our core sample in the $(R-f_{\rm {X}}/f_{\rm {opt}})$-plane is illustrated in Fig. 20. In general, type I AGN show higher X-ray fluxes and are brighter in the R-band. Type II AGN are found at lower X-ray fluxes and have fainter R-band counterparts. Two of the optically normal galaxies have X-ray-to-optical flux ratios similar to type I and type II AGN. Another two are among the objects with lowest X-ray-to-optical flux ratios in the sample.


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_20.ps} \end{figure} Figure 20: Observed X-ray flux (0.2-10 keV) vs. R-band magnitude. Dashed lines indicate the $f_{\rm {X}}/f_{\rm {opt}}$ values 0.1, 1.0, and 10. Labels: crosses - 63 type I AGN, asterisks - 25 type II AGN, triangles - 5 galaxies, rectangles - 3 stars, and circles - 21 spectroscopically unidentified sources (R-band lower limits are plotted as circles at R=24). Note that for a few objects of the core sample no WFI R-magnitudes were available and therefore these are not plotted here.

Our types I and II AGN show a large variety in X-ray flux and R-band magnitude. They are detected at X-ray fluxes from $f_{\rm {X}}\sim 2 \times 10^{-15}$ to $5 \times 10^{-13}$ erg cm-2 s-1 and in R-band magnitudes from $R \sim 18$ down to the detection limit of $R \sim 24$. There is one type I AGN (191A) at an unusually low value $f_{\rm {X}}/f_{\rm {opt}}=0.04$, a factor of 100 below the mean value of type I AGN. The highest ratio in X-ray to optical flux is found for the type II AGN object 39A with $f_{\rm {X}}/f_{\rm {opt}}=42.5$.

Most of the stars are found at star-typical $f_{\rm {X}}/f_{\rm {opt}} < 0.05$ with R < 17. Nevertheless, we also detected two M stars with $f_{\rm {X}}/f_{\rm {opt}} \sim 1$ and $R \sim 21.5$. Unidentified sources with WFI R-band data are added to Fig. 20. We plotted unidentified objects that have no detection in the R-band catalogue at R = 24.

4.6 Optical-to-near-IR colours

Figure 21 shows that type II AGN tend to be fainter and redder in the optical window than type I AGN. This figure shows a general trend for both type I and type II AGN to become redder for fainter R-magnitudes. The lack of faint blue objects can be explained by the K-band detection limit of K=20, where we lose completeness (see Fig. 6). However, the lack of bright red objects cannot be caused by any detection bias. The type II AGN have redder R-K colours, although with some overlap with the reddest type I AGN in the sample. These trends can be explained by an increasing contribution of the host galaxies for fainter type I AGN and type II AGN. The faint R-magnitudes and high R-K values indicate higher optical obscurations in type II AGN. This is in agreement with previous X-ray studies of these objects that revealed a significantly higher ratio of absorbed to unabsorbed objects compared to type I AGN.

In our survey type I and type II objects do not separate as clearly as seen in a similar plot in Mainieri et al. (2002). Therefore, we checked whether the reddest and faintest type I objects are reliably classified. The most extreme type I objects are 69A, 84A, and 585A. Their optical spectra clearly show broad emission lines, but their continua are redder than typical type I spectra. In addition, object 585A shows only weak emission lines.


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_21.ps} \end{figure} Figure 21: Colour magnitude diagram of spectroscopically classified X-ray sources. Labels: crosses - 56 type I AGN, asterisks - 20 type II AGN, and triangles - 4 galaxies. Only objects with detections in both R and K are included. The absence of blue, faint objects (below the solid line) is due only to the K-magnitude limit.

The optically normal galaxies are brighter in R-magnitudes than the typical type II AGN, but show similar R-K. All classified galaxies have R<21.5. The majority of type II AGN and galaxies have $R-K > 3~{{\rm mag}}$, consistent with the spectrum of the host galaxy being the dominating component. A considerable fraction of type I AGN also have red R-K colours. These are mostly low luminosity objects, where the host galaxy may also dominate the optical continuum.

  
5 Additional objects

In Table D.1 (Online Material, Appendix D) we list objects in the Marano Field that are not related to X-ray sources. These objects were spectroscopically investigated since slit positions on the multi-object spectroscopy masks were still available. The random selection of these additional objects, which follow a similar R-magnitude distribution as the sample of X-ray selected type II objects, is useful to investigate the redshift distribution of the field galaxies in the Marano Field.


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_22.ps}
\end{figure} Figure 22: Redshift distribution of the additional objects. Labels: solid line - 37 NELGs, and dotted line - 8 optically normal galaxies.

Figure 22 illustrates the redshift distribution of the additional non-X-ray emitting objects in the Marano Field. Narrow emission line galaxies (NELG) outnumber normal galaxies substantially. This is due to the fact that a large fraction of the spectra without emission lines did not have sufficient SNR to determine a redshift. There is a non-X-ray emitting NELG peak at z =0.5-0.9. At z > 1.0 the detection of NELG and normal galaxies drops dramatically.

Despite the low number of objects, from Figs. 22 and 15d we can compare the redshift distributions between X-ray emitting type II AGN and non-X-ray emitting NELG. Both populations show more or less the same distribution up to z = 1.2. The two groups peak at z =0.5-0.9.

The similar redshift distributions could mean that the X-ray emitting NELGs are drawn from the same population of galaxies as the control sample. On the other hand, the similar redshift distribution could also be due to a large fraction of false matches of NELGs to our X-ray sources. A detailed discussion of the number of false matches is given in Sect. 3.2 and shows that false matches make only a minor contribution to our sample of narrow line AGN.

  
6 Discussion

6.1 Type I AGN

In Sect. 4.2 we showed that the X-ray selected type I AGN peak at lower redshifts than the optically selected sample. It is interesting to see whether this difference in the redshift distributions is due to a redshift dependence of the QSO spectral energy distributions (SED). As a parameter which characterises the SED, we calculated the optical to X-ray broad band spectral index $\alpha _{\rm OX}$ between the UV luminosity density at 2500 $\AA$ and the X-ray luminosity density at 1 keV (see Sect. 3).

No significant correlation of $\alpha _{\rm OX}$ with redshift (Fig. 23) or X-ray luminosity can be found. However, there is a very significant ( $P_{\rm NULL}< 10^{-6}$) correlation of the optical luminosity and $\alpha _{\rm OX}$(Fig. 24). This correlation has been found in various samples observed with EINSTEIN (Avni & Tananbaum 1986), ROSAT (e.g., Green et al 1995; Lamer et al. 1997), and CHANDRA (e.g., Steffen et al. 2006). For a large sample of optically selected AGN, Steffen et al. (2006) computed the bivariate linear regression coefficients of $\alpha _{\rm OX}$as a function of $\log(L_{\rm opt})$ and z. They find that $\alpha _{\rm OX}$ is correlated with $\log(L_{\rm opt})$, but find no significant correlation with z (see also Avni & Tananbaum 1986 for similar results on earlier EINSTEIN data).

If $\alpha _{\rm OX}$ and optical luminosity are correlated, a non-linear relation between X-ray luminosity and optical luminosity is expected. Therefore, we plotted the X-ray luminosities versus the optical luminosity densities (Fig. 25) and computed the linear regression coefficients between $\log(L_{\rm X})$ and $\log(l_{\rm 2500~ \AA})$. Both variables $\log(L_{\rm X})$ and $\log(l_{\rm 2500~ \AA})$ are measured quantities and neither of them can be regarded as the independent or dependent variable. We used the ordinary least-squares (OLS) bisector algorithm as described by Isobe et al. (1990), which is symmetric regarding the choice of independent and dependent variable.

We find a best-fit regression $\log(L_{\rm X}) = (0.84 \pm 0.08) \times \log(l_{\rm 2500 ~\AA}) + (19.37 \pm 2.23)$. This slope is marginally (2$\sigma$ significance) flatter than the $\beta=1.0$ expected for a linear $L_{\rm X} - l_{\rm opt}$ relation. With the same method Steffen et al. (2006) find a slightly flatter slope $\beta = 0.721 \pm 0.011$.

A correlation flatter than $\beta =1$ implies that the optical luminosities in the sample are spread over a wider range of values than the X-ray luminosities. This might explain the above-mentioned discrepancies of the redshift distributions of X-ray and optically selected QSOs. The low luminosity objects are more likely to be detectable in X-rays, while the highest luminosity objects are relatively more luminous in the optical, and therefore detectable at higher redshifts in optical surveys.


  \begin{figure}
\par\includegraphics[width=8.3cm,clip]{5849_23.ps}\end{figure} Figure 23: UV to X-ray spectral index $\alpha _{\rm OX}$ vs. redshift for type I AGN in the core sample.


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_24.ps}\par\end{figure} Figure 24: UV to X-ray spectral index $\alpha _{\rm OX}$ vs. optical luminosity density at $2500 ~\AA$ for type I AGN in the core sample.


  \begin{figure}
\par\includegraphics[width=8.4cm,clip]{5849_25.ps}\end{figure} Figure 25: Observed 0.2-10 keV X-ray luminosity vs. optical luminosity density at $2500 ~\AA$ for type I AGN in the core sample (crosses). The solid line indicates the best-fit linear regression with a slope $\beta =0.84$. The dotted line with slope $\beta =1$ marks a linear $L_{\rm X} - l_{\rm opt}$ relation.

6.2 Type II AGN

Figure 15d shows that most type II AGN are found at redshifts $z\sim 0.5{-}0.9$, with a few objects at z> 2.2. No type II objects were identified in the redshift range $z \sim 1.5 {-} 2.2$. The interesting question is whether this redshift gap reflects the intrinsic distribution or is due to an observational bias.

Type II AGN show only narrow emission lines and the optical continuum radiation is dominated by the host galaxy. The spectroscopical classification of X-ray sources relies on emission lines like Ly-$\alpha$, C IV, C III, Mg II, O II, and others. Analysis of the optical spectra of type II AGN with z > 0.6 in our sample, in Szokoly et al. (2004), and in Caccianiga et al. (2004) indicates that almost all objects show no Mg II emission lines. Only in a few cases marginal Mg II emission is recognised. Effectively, no strong spectral features are present in the wavelength range between $1909~\AA$ (C III]) and $3727~\AA$ ([O II]).

Since the UV host galaxy continuum is usually very faint, the detection of type II AGN in optical imaging is already hampered by the lack of a strong UV continuum and emission lines, if the imaging bandpass falls into this rest frame range. For R-band imaging (5800-7300 $\AA$) this is the case for the redshift range $z \sim 1.0{-}2.0$. Our multi-object spectroscopy covers a useful range of ${\sim} 4000 {-} 9000$ Å. This range is reduced, if an object is not centred on the mask, but offset from the centre in the dispersion direction. Hence, in many cases only one emission line would be detectable for type II AGN in the redshift range $\sim$1.0-2.0. With a low SNR spectrum this would usually not be sufficient for a clear spectroscopical classification. For a few sources, which were undetected or very faint in the R-band images, we were able to position a MXU slit using the K-band counterparts (e.g., 20A, 63A, and 463A). In all of these cases a high redshift type II AGN could be identified.

Figure 14 supports the assumption that a large fraction of unidentified sources consists of type II AGN. Above HR2=-0.1 only type II AGN are found as counterparts for identified X-ray sources. In this region 50% of the X-ray sources are not classified and are expected to be type II AGN. Furthermore, Fig. 20 gives more evidence that the unidentified sources overlap with the type II AGN region. A ratio $f_{\rm {X}}/f_{\rm {opt}}>0.5$ is clearly a sign of AGN activity, since normal galaxies and stars usually have $f_{\rm {X}}/f_{\rm {opt}} < 0.05$. Both type II AGN and unidentified objects are found at AGN-typical $f_{\rm {X}}/f_{\rm {opt}}$, with low X-ray fluxes and faint optical counterparts.

We conclude that the majority of the unidentified X-ray sources are likely to consist of type II AGN, most of them presumably with redshifts z>1. Therefore, the intrinsic redshift distribution of the type II AGN is uncertain. The number of unidentified sources is sufficient to fill the observed gap between $z \sim 1.0{-}2.0$.

6.3 X-ray bright optically normal galaxies

Five objects in the core sample have been spectroscopically classified as galaxies without any emission lines. The soft X-ray radiation of the low X-ray luminosity galaxies (objects 120A, 241A) can be explained by a halo of X-ray emitting hot gas around elliptical galaxies (; White & Davis 1998). Three optically normal galaxies have X-ray-to-optical flux ratios and X-ray luminosities typically found for AGN. Objects of this type have been named X-ray bright optically normal galaxies (XBONGs; Comastri et al. 2002). The objects 8A, 49A, and 204A have intermediate redshifts (0.3<z<0.9) and fairly high X-ray luminosities (log $(L_{\rm {X}}) > 43$), rather hard X-ray spectra, and faint optical counterparts (R>19). The high X-ray luminosities and $f_{\rm {X}}/f_{\rm {opt}} \sim 1$ indicate active nuclei. The computed hydrogen column densities show moderate absorption.

The properties of our XBONGs are in agreement with other studies (Silverman et al. 2005; ). Even though different scenarios are discussed, the nature of XBONGs still remains unclear (Brandt & Hasinger 2005). Comastri et al. (2002) assume that the non-detection of optical emission lines and the hard X-ray colours are due to a heavily absorbed AGN embedded in a galaxy whose X-ray emission is due to a scattered/reprocessed nuclear component. The three XBONGs do not show harder HR2 values than type II AGN and also do not have the highest column densities of the AGN sample. Hence, a heavily absorbed AGN without scattered/reprocessed X-ray radiation is ruled out. Scattered or reprocessed radiation is necessary to explain the X-ray and optical observations. Following Komossa et al. (1998), the observed X-ray luminosity of a scattered emission by a warm reflector is only a hundredth or thousandth of the intrinsic X-ray luminosity. For our objects with observed log $(L_{\rm {X}}) \sim 43{-}44$, this would require intrinsic X-ray luminosities of log $(L_{\rm {X}}) \sim 45{-}47$, which would make them by far the most luminous X-ray emitters in the sample.

Another possible explanation for these objects is given by Severgnini et al. (2003). They studied three low redshift XBONGs with log $(L_{\rm {X}}) \sim 42{-}43$ and find $N_{\rm {H}}$ values similar to our sample. In their interpretation the faint emission lines of an obscured or unobscured AGN up to an intrinsic log $(L_{\rm {X}}) \sim 43$ can be overwhelmed by a host galaxy with an absolute magnitude $M_{\rm R}\geq -22$. However, XBONGs 8A and 49A are not consistent with the scenario mentioned by Severgnini et al. (2003). The AGN of 49A with an intrinsic log $(L_{\rm {X}}) = 43.7$ should be optically too bright to be hidden by a galaxy of $M_{\rm R}=-21.8$. Moreover, source 8A, which is also detected as a radio source (Gruppioni et al. 1999), has an intrinsic log $(L_{\rm {X}}) = 43.9$. Therefore, it is more X-ray luminous by almost one order of magnitude than the examples in Severgnini et al. (2003). The absolute magnitude of the host galaxy is $M_{\rm R}=-22.6$, but an optically much brighter galaxy is needed to hide the emission lines of such a powerful AGN. By adding a template type I spectrum to the measured spectra of objects 8A and 49A, we estimated that any hidden type I AGN in these objects would have $\alpha _{\rm OX}$ values of $\sim$0.8 or less.

Regarding the X-ray and optical colours, our XBONGs are very similar to type II AGN. Therefore, it is likely that these sources have a narrow line type II spectrum, which is intrinsically weak or dust absorbed and not detected above the continuum of the host galaxy. This result is consistent with Caccianiga et al. (2004), who state that more accurate re-observation (high resolution data and/or better spectral coverage) of hard X-ray emitting galaxies will reveal narrow emission lines and, therefore, their real AGN nature. Severgnini et al. (2003) also claim possible misclassification of type II AGN as XBONGs. However, some of these objects are still classified as XBONGs after a high resolution observation with better spectral coverage.

As for type II AGN, the observed redshift distribution of XBONGs could be due to an observational bias. XBONGs are found with brighter R-magnitudes than typical type II AGN up to z=1. But missing emission line features make them optically even more difficult to identify than type II AGN. For a reliable classification they have to be optically brighter, thus limiting their maximum redshift.

6.4 Stars

In the Marano Field survey 7% of the X-ray sources are identified with galactic stars. As in other deep surveys, these are typically G, K, and M stars, whose X-ray emission is caused by magnetic activity (Brandt & Hasinger 2005). Two sources classified as stars have $f_{\rm {X}}/f_{\rm {opt}} \sim 1$ (Fig. 20), which is more typical for AGN. However, we carefully reanalysed the X-ray colours, optical properties, and the optical image. Apart from the unusally high $f_{\rm {X}}/f_{\rm {opt}}$ all existing evidence suggests M stars as reliable counterparts for both X-ray sources.

   
7 Conclusions

With a total of 120 ks good observation time we detect 328 X-ray sources. Among 140 spectroscopic classifications of 187 optical counterparts (in a 3 $\sigma _{\rm {X}}$ position error with $\sigma_{\rm {syst.}} =0.7\hbox{$^{\prime\prime}$ }$) to 328 X-ray sources (not completely covered by optical data), we find 89 broad emission line objects, 36 narrow emission line objects, 6 galaxies, and 9 stars. In the central region of the Marano Field we reach an identification completeness of 65%.

While the redshift distribution of the optically selected QSOs in the field is basically flat up to $z\simeq 3$, the distribution of the XMM-Newton sources peaks at $z\simeq 1$. Using our sample of XMM-Newton sources classified as type I AGN, we investigate possible causes for this tendency of deep X-ray surveys to discover faint populations at comparably low redshifts. We find no significant correlation of the optical to X-ray SED slope  $\alpha _{\rm OX}$ with redshift. As is widely reported in the literature, $\alpha _{\rm OX}$ is tightly correlated with optical luminosity. A different representation of this correlation is the non-linear dependency $L_{\rm X}(l_{\rm opt})$. The best-fit regression $\log(L_{\rm X}) = 0.84 \times \log(l_{\rm 2500~ \AA})+ 19.36$ implies that the optical luminosities in a typical sample spread over a wider range than the X-ray luminosities. Therefore, the less luminous objects of the population are more easily detected in X-rays than in the optical. On the other hand, an increase of optical luminosity is, on average, not accompanied by a proportional increase in X-ray luminosity. Hence, the luminous (and more distant) objects are detected more efficiently in optical surveys.

In the core region of the field we classified 31 new type II AGN. Most of them are found at redshifts z<1.5; additionally we find five high redshift type II AGN at z>2.2. Fifteen objects can be classified as type II QSOs with intrinsic X-ray luminosities $L_{\rm X} > 10^{44}$ erg s-1.

We show that the optical identification of type II AGN is very difficult in the redshift range z=1-2 due to the absence of suitable emission lines in the optical window. Therefore, their intrinsic redshift distribution remains unclear. We demonstrate that the use of K-band data for MXU slit positioning reveals type II AGN or XBONGs that would have likely been missed in R-band images. The X-ray selected type II AGN have a very similar redshift distribution to non-X-ray emitting narrow emission line galaxies, which have been spectroscopically classified in the same field as a control sample.

The intrinsic hydrogen column densities, as derived from X-ray hardness ratios, show that the fraction of absorbed X-ray sources is much higher for type II AGN than for type I. Nevertheless, we find a few unabsorbed type II AGN and some evidence for absorption in high redshift type I AGN. However, due to the faintness of the sources, the significance of absorption in the individual type I AGN is low. Furthermore, at high redshifts statistical fluctuations in the X-ray spectrum can lead to high values of spuriously measured $N_{\rm {H}}$ values (e.g., Akylas et al. 2006). If we only include $2 \sigma $ detections of intrinsic $N_{\rm {H}}$ in our analysis, only 4 absorbed type I AGN remain and no dependency of absorbed fraction on redshift is obvious. In the CHANDRA data from Chandra Deep Field South (CDFS), Tozzi et al. (2003) find hints of an increase of absorbed fraction with redshift. However, these data probably also suffer from the uncertainties mentioned above. Using XMM data in the same field, Dwelly & Page (2006) find little evidence that the absorption distribution is dependent on either intrinsic X-ray luminosity or redshift. Our type I and type II AGN cover the same range in absorption corrected X-ray luminosity. However, the mean corrected X-ray luminosity is smaller for type II AGN than for type I AGN.

Three of the XMM-Newton classifications are X-ray bright optically normal galaxies (XBONGs), which show X-ray luminosities typical for AGN, but no optical emission lines. Their X-ray luminosities of log $(L_{\rm {X}}) \sim 43{-}44$ are comparable to the mean type II AGN X-ray luminosity. They do not show harder X-ray spectra and do not reveal higher hydrogen column densities than the average type II AGN. We conclude that the objects are very similar to type II AGN. However, their narrow emission lines are not detected, since they are either intrinsically weak or obscured by dust.

Acknowledgements
Mirko Krumpe is supported by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) GmbH under contract No. FKZ 50 OR 0404. Georg Lamer acknowledges support by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) GmbH under contract No. FKZ 50 OX 0201.

References

 

  
8 Online Material

  
Appendix A: X-ray source list of the XMM-Newton Marano Field mosaic

A.1 Explanation of table columns (detailed description in Sect. 2.1)

(1) ID
Classification number of the XMM-Newton X-ray source in the Marano Field.
(2) Name XMMU J...
XMMU source name of the XMM-Newton X-ray source.
(3) CR [ks-1]
Added count rates from all 3 EPIC cameras.
(4) ML
Maximum detection likelihood.
(5) $\sigma _{\rm {X}}$ [arcsec]
Position error of the X-ray source. $\sigma_{\rm {X}} = \sqrt {\sigma_{\rm {stat.}}^2+\sigma_{\rm {syst.}}^2}$, $\sigma_{\rm {syst.}} =0.7\hbox{$^{\prime\prime}$ }$, see Sects. 2.3 and 3.2.
(6) HR1
PN-detector hardness ratios with errors in the 0.2-0.5 keV and 0.5-2.0 keV band.
(7) HR2
PN-detector hardness ratios with errors in the 0.5-2.0 keV and 2.0-4.5 keV band.
(8) HR3
PN-detector hardness ratios with errors in the 2.0-4.5 keV and 4.5-7.5 keV band.
(9) flux [ $10^{-14} {\rm erg~s^{-1}~ cm^{-2}}$]
EPIC flux in a 0.2-10 keV energy band. Determined from the sum of mos1-, mos2-, and pn-count rates in the 0.2-12.0 keV via an energy conversion factor of 1.61452E-12 [ ${\rm erg~cm^{-2}}$].


   
Table A.1: X-ray source list.
(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID Name CR ML $\sigma _{\rm {X}}$ HR1 HR2 HR3 Flux
  XMMU J... [ks-1]   [arcsec]       [ $10^{-14}~ {\rm erg ~s^{-1}~ cm^{-2}}$]
1 XMMU J031549.7-551810 101.0 $\pm$ 2.1 6918.8 0.72 0.195 $\pm$ 0.033 -0.617 $\pm$ 0.032 -0.524 $\pm$ 0.081 16.31
2 XMMU J031547.5-552902 296.3 $\pm$ 6.4 7886.9 0.72 0.316 $\pm$ 0.034 -0.681 $\pm$ 0.030 -0.362 $\pm$ 0.087 47.85
3 XMMU J031732.8-552025 181.3 $\pm$ 8.7 2130.2 0.77 0.788 $\pm$ 0.066 -0.587 $\pm$ 0.083 -0.381 $\pm$ 0.198 29.27
4 XMMU J031334.1-552642 232.7 $\pm$ 6.3 4202.8 0.74 -0.037 $\pm$ 0.040 -0.760 $\pm$ 0.038 -0.672 $\pm$ 0.133 37.56
5 XMMU J031650.3-551109 51.1 $\pm$ 2.6 1326.8 0.78 0.075 $\pm$ 0.089 -0.750 $\pm$ 0.099 -0.985 $\pm$ 0.410 8.244
6 XMMU J031605.9-551538 37.0 $\pm$ 1.3 1763.4 0.76 0.061 $\pm$ 0.053 -0.690 $\pm$ 0.057 -0.519 $\pm$ 0.197 5.966
7 XMMU J031505.7-550942 24.6 $\pm$ 1.0 1197.7 0.78 -0.095 $\pm$ 0.061 -0.606 $\pm$ 0.073 -0.864 $\pm$ 0.200 3.967
8 XMMU J031456.2-552006 24.6 $\pm$ 1.0 1025.1 0.78 0.760 $\pm$ 0.070 -0.186 $\pm$ 0.074 -0.287 $\pm$ 0.098 3.967
9 XMMU J031510.1-551313 21.3 $\pm$ 0.9 1151.4 0.77 0.564 $\pm$ 0.056 -0.554 $\pm$ 0.056 -0.520 $\pm$ 0.133 3.438
10 XMMU J031328.3-551019 60.3 $\pm$ 2.2 1627.3 0.77 0.570 $\pm$ 0.051 -0.541 $\pm$ 0.051 -0.281 $\pm$ 0.105 9.740
11 XMMU J031511.4-550927 24.7 $\pm$ 1.0 1123.8 0.77 0.206 $\pm$ 0.061 -0.664 $\pm$ 0.060 -0.616 $\pm$ 0.187 3.984
12 XMMU J031432.4-551440 21.1 $\pm$ 0.9 988.4 0.81 0.325 $\pm$ 0.057 -0.984 $\pm$ 0.026 - 3.405
13 XMMU J031351.1-551837 29.3 $\pm$ 1.4 796.3 0.81 0.041 $\pm$ 0.074 -0.702 $\pm$ 0.078 -0.189 $\pm$ 0.233 4.733
14 XMMU J031638.1-550635 33.6 $\pm$ 1.8 727.7 0.83 0.184 $\pm$ 0.085 -0.740 $\pm$ 0.083 -0.504 $\pm$ 0.327 5.419
15 XMMU J031552.8-550816 17.6 $\pm$ 1.0 563.1 0.82 0.526 $\pm$ 0.087 -0.552 $\pm$ 0.091 -0.363 $\pm$ 0.200 2.847
16 XMMU J031538.3-550140 41.4 $\pm$ 2.0 916.2 0.80 0.332 $\pm$ 0.073 -0.575 $\pm$ 0.072 -0.359 $\pm$ 0.168 6.678
17 XMMU J031528.6-551029 24.9 $\pm$ 1.0 1053.5 0.80 0.381 $\pm$ 0.054 -0.690 $\pm$ 0.052 -0.446 $\pm$ 0.181 4.022
18 XMMU J031421.3-552403 18.9 $\pm$ 1.2 403.9 0.87 0.454 $\pm$ 0.093 -0.669 $\pm$ 0.091 -0.614 $\pm$ 0.344 3.056
19 XMMU J031525.3-551827 13.2 $\pm$ 0.8 460.7 0.84 0.399 $\pm$ 0.082 -0.648 $\pm$ 0.080 -0.393 $\pm$ 0.247 2.129
20 XMMU J031621.6-551759 17.1 $\pm$ 1.3 380.8 0.87 0.569 $\pm$ 0.119 -0.432 $\pm$ 0.117 -0.507 $\pm$ 0.253 2.758
21 XMMU J031626.3-552250 19.3 $\pm$ 1.5 314.2 0.94 0.529 $\pm$ 0.118 -0.703 $\pm$ 0.106 -0.819 $\pm$ 0.353 3.110
22 XMMU J031519.9-550230 24.4 $\pm$ 1.5 473.6 0.89 0.238 $\pm$ 0.101 -0.540 $\pm$ 0.107 -0.128 $\pm$ 0.223 3.936
23 XMMU J031432.3-551959 15.5 $\pm$ 1.0 400.6 0.87 0.313 $\pm$ 0.092 -0.691 $\pm$ 0.098 -0.118 $\pm$ 0.273 2.499
24 XMMU J031703.7-550513 43.9 $\pm$ 3.5 339.3 0.97 0.326 $\pm$ 0.128 -0.480 $\pm$ 0.123 -0.669 $\pm$ 0.228 7.091
25 XMMU J031534.9-551925 14.7 $\pm$ 1.0 448.3 0.85 0.352 $\pm$ 0.093 -0.611 $\pm$ 0.097 -0.608 $\pm$ 0.254 2.373
26 XMMU J031436.1-551402 11.0 $\pm$ 0.7 326.8 0.90 0.340 $\pm$ 0.101 -0.732 $\pm$ 0.109 -0.275 $\pm$ 0.390 1.770
27 XMMU J031538.9-552219 13.1 $\pm$ 1.0 285.5 0.92 0.290 $\pm$ 0.121 -0.862 $\pm$ 0.124 -0.227 $\pm$ 0.801 2.116
28 XMMU J031507.7-550456 15.6 $\pm$ 1.0 404.5 0.89 0.166 $\pm$ 0.088 -0.702 $\pm$ 0.094 -0.711 $\pm$ 0.349 2.524
29 XMMU J031511.2-551530 11.0 $\pm$ 0.7 448.1 0.86 0.312 $\pm$ 0.080 -1.000 $\pm$ 0.042 - 1.780
30 XMMU J031659.7-551622 14.9 $\pm$ 1.3 207.6 0.99 1.000 $\pm$ 0.095 0.085 $\pm$ 0.167 -0.237 $\pm$ 0.188 2.408
31 XMMU J031706.8-551948 32.0 $\pm$ 2.6 297.5 0.97 0.650 $\pm$ 0.135 -0.251 $\pm$ 0.133 -0.551 $\pm$ 0.190 5.159
32 XMMU J031547.2-551755 12.5 $\pm$ 0.9 279.1 0.88 0.908 $\pm$ 0.090 -0.344 $\pm$ 0.098 -0.523 $\pm$ 0.177 2.018
33 XMMU J031319.5-551616 19.9 $\pm$ 1.4 295.1 0.93 0.531 $\pm$ 0.118 -0.551 $\pm$ 0.122 -0.566 $\pm$ 0.277 3.212
34 XMMU J031559.3-552637 28.2 $\pm$ 1.9 476.3 0.88 -0.240 $\pm$ 0.095 -0.668 $\pm$ 0.122 -0.675 $\pm$ 0.413 4.560
35 XMMU J031503.3-551906 9.4 $\pm$ 0.7 249.8 0.90 0.931 $\pm$ 0.101 -0.292 $\pm$ 0.134 0.094 $\pm$ 0.166 1.513
36 XMMU J031411.5-551830 8.5 $\pm$ 0.8 164.2 1.01 0.601 $\pm$ 0.174 -0.459 $\pm$ 0.160 -0.481 $\pm$ 0.319 1.365
37 XMMU J031236.3-545314 67.1 $\pm$ 5.3 256.9 1.04 0.233 $\pm$ 0.126 -0.513 $\pm$ 0.123 -0.542 $\pm$ 0.270 10.84
38 XMMU J031630.2-551909 21.6 $\pm$ 1.4 414.3 0.89 0.254 $\pm$ 0.087 -0.819 $\pm$ 0.075 -0.398 $\pm$ 0.429 3.481
39 XMMU J031339.7-550151 19.8 $\pm$ 1.5 249.8 1.00 0.769 $\pm$ 0.122 -0.402 $\pm$ 0.122 -0.338 $\pm$ 0.209 3.201
40 XMMU J031558.0-545549 30.9 $\pm$ 3.1 180.8 1.12 0.433 $\pm$ 0.140 -0.819 $\pm$ 0.117 -0.271 $\pm$ 0.658 4.982
41 XMMU J031608.1-551723 8.7 $\pm$ 0.9 151.6 1.01 0.194 $\pm$ 0.128 -0.947 $\pm$ 0.100 - 1.410
42 XMMU J031548.8-552245 12.3 $\pm$ 1.0 216.1 0.96 0.231 $\pm$ 0.120 -0.647 $\pm$ 0.123 -0.693 $\pm$ 0.396 1.992
43 XMMU J031332.4-551050 12.2 $\pm$ 1.0 179.3 1.03 0.549 $\pm$ 0.102 -0.933 $\pm$ 0.085 -1.000 $\pm$ 0.982 1.973
44 XMMU J031346.7-550031 14.1 $\pm$ 1.4 119.6 1.18 0.366 $\pm$ 0.154 -0.769 $\pm$ 0.132 0.364 $\pm$ 0.325 2.279
45 XMMU J031451.5-551932 5.3 $\pm$ 0.6 89.0 1.13 1.000 $\pm$ 0.087 -0.301 $\pm$ 0.168 -0.363 $\pm$ 0.293 0.853
46 XMMU J031607.4-552322 13.2 $\pm$ 1.2 183.7 1.07 0.052 $\pm$ 0.155 -0.582 $\pm$ 0.174 -0.514 $\pm$ 0.479 2.131
47 XMMU J031538.8-551043 4.5 $\pm$ 0.5 82.4 1.12 0.925 $\pm$ 0.124 -0.407 $\pm$ 0.158 -0.886 $\pm$ 0.260 0.731
48 XMMU J031458.5-545732 21.7 $\pm$ 1.9 183.1 1.09 0.551 $\pm$ 0.126 -0.925 $\pm$ 0.093 - 3.502
49 XMMU J031638.4-552013 13.5 $\pm$ 1.2 167.9 1.03 1.000 $\pm$ 0.050 -0.413 $\pm$ 0.134 -0.430 $\pm$ 0.248 2.172
50 XMMU J031410.1-551746 7.6 $\pm$ 0.7 112.1 1.11 0.969 $\pm$ 0.087 -0.367 $\pm$ 0.157 -0.117 $\pm$ 0.245 1.233
51 XMMU J031630.6-551501 10.4 $\pm$ 1.0 154.6 1.05 0.617 $\pm$ 0.145 -0.411 $\pm$ 0.147 -0.530 $\pm$ 0.334 1.687
52 XMMU J031451.7-545713 15.6 $\pm$ 2.0 89.9 1.26 0.033 $\pm$ 0.209 -0.662 $\pm$ 0.231 - 2.518
53 XMMU J031358.9-551754 6.7 $\pm$ 0.8 75.4 1.20 0.574 $\pm$ 0.185 -0.478 $\pm$ 0.179 -1.000 $\pm$ 0.487 1.078
54 XMMU J031612.7-545910 11.3 $\pm$ 1.5 68.3 1.34 0.175 $\pm$ 0.222 -0.852 $\pm$ 0.197 0.242 $\pm$ 0.888 1.820
55 XMMU J031457.3-552027 4.6 $\pm$ 0.6 45.0 1.31 0.421 $\pm$ 0.203 -0.759 $\pm$ 0.256 -0.219 $\pm$ 0.899 0.741
56 XMMU J031250.9-551728 28.2 $\pm$ 2.6 208.6 1.07 0.142 $\pm$ 0.172 -0.208 $\pm$ 0.174 -0.940 $\pm$ 0.192 4.559
57 XMMU J031344.2-551922 8.2 $\pm$ 0.9 74.9 1.22 0.349 $\pm$ 0.179 -0.547 $\pm$ 0.168 -0.259 $\pm$ 0.358 1.329
58 XMMU J031301.8-552224 21.0 $\pm$ 2.1 103.4 1.20 0.128 $\pm$ 0.157 -0.412 $\pm$ 0.170 -0.862 $\pm$ 0.253 3.389
59 XMMU J031339.6-551426 10.9 $\pm$ 0.9 138.7 1.06 0.126 $\pm$ 0.120 -0.640 $\pm$ 0.135 0.252 $\pm$ 0.253 1.753
60 XMMU J031426.4-551746 6.5 $\pm$ 0.6 97.6 1.14 0.211 $\pm$ 0.155 -0.468 $\pm$ 0.165 -0.493 $\pm$ 0.336 1.042
61 XMMU J031238.7-550232 2.9 $\pm$ 1.1 9.6 2.26 1.000 $\pm$ 0.892 -1.000 $\pm$ 0.643 - 0.465
62 XMMU J031442.0-545555 22.3 $\pm$ 3.0 82.8 1.35 0.625 $\pm$ 0.149 -0.795 $\pm$ 0.128 -0.043 $\pm$ 0.495 3.595
63 XMMU J031517.1-550602 7.2 $\pm$ 0.7 130.2 1.07 0.651 $\pm$ 0.143 -0.398 $\pm$ 0.132 -1.000 $\pm$ 0.197 1.164
64 XMMU J031334.0-551021 7.3 $\pm$ 0.9 44.9 1.43 0.240 $\pm$ 0.187 -0.620 $\pm$ 0.182 0.128 $\pm$ 0.361 1.179
65 XMMU J031402.2-552756 2.2 $\pm$ 1.3 9.9 2.07 - - - 0.360
66 XMMU J031500.8-550718 4.0 $\pm$ 0.6 51.4 1.24 0.720 $\pm$ 0.184 -0.585 $\pm$ 0.167 -0.458 $\pm$ 0.488 0.652
67 XMMU J031310.6-551312 12.0 $\pm$ 1.1 109.4 1.09 0.232 $\pm$ 0.153 -0.609 $\pm$ 0.154 0.062 $\pm$ 0.323 1.945
68 XMMU J031338.2-552303 12.1 $\pm$ 1.2 107.1 1.13 0.105 $\pm$ 0.181 -0.569 $\pm$ 0.200 -0.183 $\pm$ 0.442 1.954
69 XMMU J031415.4-551910 3.1 $\pm$ 0.6 19.3 1.54 0.639 $\pm$ 0.293 -0.867 $\pm$ 0.260 0.676 $\pm$ 0.595 0.500
70 XMMU J031620.8-550648 2.9 $\pm$ 1.0 13.4 1.84 -0.259 $\pm$ 0.652 - 0.959 $\pm$ 0.482 0.464
71 XMMU J031714.1-550131 17.9 $\pm$ 2.5 61.4 1.45 0.643 $\pm$ 0.182 -0.856 $\pm$ 0.146 -0.304 $\pm$ 0.861 2.892
72 XMMU J031660.0-545855 4.9 $\pm$ 2.1 9.5 2.38 -0.145 $\pm$ 0.860 -1.000 $\pm$ 0.872 - 0.787
73 XMMU J031321.3-552046 12.9 $\pm$ 1.5 87.6 1.24 0.379 $\pm$ 0.155 -0.806 $\pm$ 0.133 0.399 $\pm$ 0.371 2.086
75 XMMU J031601.3-550516 5.6 $\pm$ 0.7 56.6 1.25 0.391 $\pm$ 0.195 -0.521 $\pm$ 0.200 -0.874 $\pm$ 0.360 0.909
76 XMMU J031549.7-550908 4.9 $\pm$ 0.6 67.5 1.28 0.472 $\pm$ 0.179 -0.819 $\pm$ 0.170 0.177 $\pm$ 0.655 0.798
78 XMMU J031502.2-552611 4.6 $\pm$ 1.1 19.0 1.50 1.000 $\pm$ 0.332 -0.561 $\pm$ 0.316 0.263 $\pm$ 0.505 0.748
79 XMMU J031343.7-552007 1.8 $\pm$ 0.6 5.4 1.98 - 0.479 $\pm$ 0.739 -0.832 $\pm$ 0.777 0.295
80 XMMU J031359.8-545716 11.7 $\pm$ 1.8 52.1 1.45 0.156 $\pm$ 0.257 -0.825 $\pm$ 0.253 - 1.886
81 XMMU J031343.7-550153 12.7 $\pm$ 1.3 98.6 1.20 0.510 $\pm$ 0.136 -0.625 $\pm$ 0.132 -0.931 $\pm$ 0.224 2.046
83 XMMU J031448.2-552231 6.5 $\pm$ 0.8 87.9 1.16 0.417 $\pm$ 0.142 -0.737 $\pm$ 0.148 -0.682 $\pm$ 0.632 1.046
84 XMMU J031621.8-552038 5.8 $\pm$ 1.1 42.0 1.41 0.979 $\pm$ 0.154 -0.739 $\pm$ 0.275 -0.087 $\pm$ 0.845 0.934
85 XMMU J031523.1-545919 1.4 $\pm$ 0.7 6.4 2.28 -1.000 $\pm$ 0.502 - - 0.222
86 XMMU J031345.0-551612 5.6 $\pm$ 0.7 49.8 1.32 0.558 $\pm$ 0.194 -0.403 $\pm$ 0.193 -1.000 $\pm$ 0.389 0.911
87 XMMU J031454.9-551411 1.8 $\pm$ 0.3 15.9 1.53 0.743 $\pm$ 0.362 -0.453 $\pm$ 0.416 -1.000 $\pm$ 0.746 0.285
88 XMMU J031316.3-550311 10.4 $\pm$ 1.2 67.0 1.38 0.289 $\pm$ 0.165 -0.700 $\pm$ 0.174 -0.293 $\pm$ 0.501 1.672
90 XMMU J031205.6-545831 17.7 $\pm$ 2.9 35.7 1.77 -0.349 $\pm$ 0.287 -0.525 $\pm$ 0.443 0.334 $\pm$ 0.597 2.864
92 XMMU J031200.1-550224 22.2 $\pm$ 2.8 430.8 1.47 0.492 $\pm$ 0.210 -0.583 $\pm$ 0.191 -0.722 $\pm$ 0.410 3.590
94 XMMU J031530.5-552558 5.3 $\pm$ 0.9 33.6 1.37 -0.460 $\pm$ 0.210 -0.098 $\pm$ 0.367 -1.000 $\pm$ 0.708 0.856
96 XMMU J031654.4-550625 0.9 $\pm$ 0.7 6.4 2.63 - - - 0.143
98 XMMU J031247.8-550535 14.4 $\pm$ 1.7 79.7 1.33 0.841 $\pm$ 0.120 -0.550 $\pm$ 0.148 -0.711 $\pm$ 0.297 2.325
99 XMMU J031358.1-545510 12.5 $\pm$ 2.1 30.5 1.66 0.358 $\pm$ 0.256 -0.410 $\pm$ 0.257 -0.327 $\pm$ 0.407 2.020
100 XMMU J031243.9-551100 13.8 $\pm$ 1.7 63.3 1.39 0.256 $\pm$ 0.192 -0.628 $\pm$ 0.193 -1.000 $\pm$ 0.496 2.233
101 XMMU J031719.1-550535 4.2 $\pm$ 2.0 5.2 2.37 - - - 0.678
102 XMMU J031259.3-550934 4.3 $\pm$ 1.1 12.1 2.23 1.000 $\pm$ 0.341 -1.000 $\pm$ 0.256 - 0.689
104 XMMU J031647.2-551029 2.7 $\pm$ 0.9 7.9 2.16 0.944 $\pm$ 0.438 -0.692 $\pm$ 0.412 - 0.430
106 XMMU J031510.1-550516 3.5 $\pm$ 0.7 24.9 1.69 0.286 $\pm$ 0.354 -0.404 $\pm$ 0.323 - 0.566
108 XMMU J031450.7-545541 18.1 $\pm$ 2.6 62.5 1.51 -0.218 $\pm$ 0.184 -1.000 $\pm$ 0.098 - 2.920
111 XMMU J031505.0-552947 6.1 $\pm$ 1.7 8.9 2.17 -0.206 $\pm$ 0.499 0.029 $\pm$ 0.584 -0.900 $\pm$ 0.655 0.992
115 XMMU J031712.4-551033 2.6 $\pm$ 1.2 6.3 2.41 - - - 0.421
116 XMMU J031620.9-551651 5.4 $\pm$ 0.9 47.8 1.26 1.000 $\pm$ 0.552 0.428 $\pm$ 0.256 -0.426 $\pm$ 0.271 0.867
117 XMMU J031601.7-552819 7.9 $\pm$ 1.3 43.4 1.54 0.352 $\pm$ 0.288 -0.667 $\pm$ 0.296 - 1.274
119 XMMU J031729.1-552051 12.0 $\pm$ 5.0 7.9 2.28 - - - 1.931
120 XMMU J031313.5-550158 7.9 $\pm$ 1.2 32.7 1.50 0.298 $\pm$ 0.216 -1.000 $\pm$ 0.296 - 1.279
121 XMMU J031703.7-550840 4.2 $\pm$ 1.4 15.1 1.79 0.894 $\pm$ 0.423 -0.174 $\pm$ 0.430 - 0.685
124 XMMU J031519.5-550122 5.1 $\pm$ 1.0 24.7 1.63 0.997 $\pm$ 0.143 -0.211 $\pm$ 0.262 -0.856 $\pm$ 0.370 0.818
125 XMMU J031623.4-550326 3.9 $\pm$ 1.4 6.6 2.02 - - - 0.622
126 XMMU J031355.9-545353 8.1 $\pm$ 2.5 8.5 2.23 0.282 $\pm$ 0.485 -1.000 $\pm$ 0.490 1.000 $\pm$ 0.745 1.305
128 XMMU J031532.9-553100 4.9 $\pm$ 1.7 6.7 2.26 - - - 0.793
130 XMMU J031537.4-552409 4.3 $\pm$ 0.8 28.7 1.61 0.997 $\pm$ 0.146 -0.626 $\pm$ 0.272 - 0.693
131 XMMU J031703.4-552500 6.0 $\pm$ 1.5 10.9 1.96 0.549 $\pm$ 0.357 -1.000 $\pm$ 0.163 - 0.970
132 XMMU J031614.5-551728 4.3 $\pm$ 0.9 27.7 1.45 0.652 $\pm$ 0.330 -0.365 $\pm$ 0.277 -0.290 $\pm$ 0.519 0.686
133 XMMU J031426.4-552113 2.7 $\pm$ 0.6 11.4 1.82 -0.339 $\pm$ 0.354 -0.490 $\pm$ 0.606 0.160 $\pm$ 0.934 0.429
134 XMMU J031258.4-550235 7.2 $\pm$ 1.2 30.9 1.60 -0.504 $\pm$ 0.268 -0.070 $\pm$ 0.447 -0.209 $\pm$ 0.572 1.162
135 XMMU J031315.3-552623 12.8 $\pm$ 2.5 31.0 1.70 0.134 $\pm$ 0.243 -0.695 $\pm$ 0.241 -1.000 $\pm$ 0.701 2.065
136 XMMU J031607.7-553423 34.9 $\pm$ 5.3 299.1 1.59 0.872 $\pm$ 0.211 -0.564 $\pm$ 0.265 -0.023 $\pm$ 0.522 5.629
138 XMMU J031315.2-550136 4.4 $\pm$ 1.0 10.1 1.85 0.460 $\pm$ 0.472 -0.037 $\pm$ 0.405 -0.631 $\pm$ 0.491 0.704
140 XMMU J031433.1-552517 6.8 $\pm$ 0.9 46.4 1.35 0.294 $\pm$ 0.183 -0.762 $\pm$ 0.212 -0.815 $\pm$ 0.842 1.105
142 XMMU J031240.2-545342 14.2 $\pm$ 3.4 19.2 1.97 0.463 $\pm$ 0.290 -0.630 $\pm$ 0.249 -1.000 $\pm$ 0.552 2.294
144 XMMU J031420.9-551023 2.9 $\pm$ 0.5 21.6 1.68 0.597 $\pm$ 0.260 -0.633 $\pm$ 0.279 -0.769 $\pm$ 0.816 0.463
145 XMMU J031537.1-551713 1.3 $\pm$ 0.3 13.7 1.71 - 1.000 $\pm$ 0.447 -1.000 $\pm$ 0.604 0.213
149 XMMU J031254.9-551551 13.3 $\pm$ 1.8 60.0 1.42 0.171 $\pm$ 0.206 -0.634 $\pm$ 0.217 -0.871 $\pm$ 0.543 2.148
150 XMMU J031429.6-550605 3.7 $\pm$ 0.6 32.8 1.43 1.000 $\pm$ 0.160 -0.814 $\pm$ 0.220 0.079 $\pm$ 0.860 0.598
151 XMMU J031650.1-551059 10.3 $\pm$ 2.4 5.2 2.16 -0.076 $\pm$ 0.232 -0.654 $\pm$ 0.281 0.053 $\pm$ 0.597 1.665
153 XMMU J031537.7-552243 3.6 $\pm$ 0.7 18.7 1.65 0.472 $\pm$ 0.277 -0.870 $\pm$ 0.248 - 0.583
157 XMMU J031627.9-550541 2.3 $\pm$ 0.7 8.6 2.42 -1.000 $\pm$ 0.738 - - 0.369
159 XMMU J031435.7-553128 9.4 $\pm$ 2.3 20.0 1.77 0.032 $\pm$ 0.640 -0.566 $\pm$ 0.726 - 1.520
163 XMMU J031506.7-550113 2.8 $\pm$ 0.8 8.7 1.98 1.000 $\pm$ 0.383 -1.000 $\pm$ 0.249 - 0.451
164 XMMU J031326.5-550906 3.2 $\pm$ 0.8 11.9 1.88 0.951 $\pm$ 0.447 -0.715 $\pm$ 0.517 0.617 $\pm$ 0.674 0.514
165 XMMU J031532.4-551649 1.0 $\pm$ 0.4 7.0 1.93 - -0.027 $\pm$ 0.636 -0.531 $\pm$ 0.757 0.161
166 XMMU J031456.0-551811 2.0 $\pm$ 0.4 11.6 1.68 1.000 $\pm$ 0.607 0.135 $\pm$ 0.318 -0.296 $\pm$ 0.388 0.327
171 XMMU J031351.2-550257 5.8 $\pm$ 0.8 46.7 1.40 1.000 $\pm$ 0.128 0.162 $\pm$ 0.222 -1.000 $\pm$ 0.119 0.942
172 XMMU J031624.4-551905 5.9 $\pm$ 0.8 57.5 1.30 0.719 $\pm$ 0.186 -0.583 $\pm$ 0.193 -0.425 $\pm$ 0.494 0.959
175 XMMU J031541.5-553019 11.7 $\pm$ 2.4 22.7 1.77 0.711 $\pm$ 0.245 -1.000 $\pm$ 0.244 - 1.887
178 XMMU J031455.2-545745 7.1 $\pm$ 1.5 12.2 2.08 0.323 $\pm$ 0.208 -0.752 $\pm$ 0.175 -1.000 $\pm$ 0.680 1.146
183 XMMU J031246.1-550523 8.5 $\pm$ 1.5 25.3 1.61 0.668 $\pm$ 0.219 -0.482 $\pm$ 0.236 -0.758 $\pm$ 0.370 1.376
184 XMMU J031425.7-552641 3.7 $\pm$ 1.1 12.9 1.90 - 0.596 $\pm$ 0.559 -0.663 $\pm$ 0.523 0.603
185 XMMU J031650.8-552225 7.7 $\pm$ 1.4 33.8 1.50 1.000 $\pm$ 0.202 -0.456 $\pm$ 0.220 -0.961 $\pm$ 0.421 1.245
189 XMMU J031326.4-550121 2.6 $\pm$ 0.9 8.9 2.12 -0.574 $\pm$ 0.482 - - 0.425
191 XMMU J031438.7-552005 2.9 $\pm$ 0.5 24.9 1.55 0.105 $\pm$ 0.549 0.308 $\pm$ 0.409 -0.772 $\pm$ 0.419 0.469
195 XMMU J031522.2-552750 4.7 $\pm$ 1.0 16.7 1.70 0.115 $\pm$ 0.435 0.196 $\pm$ 0.371 -0.628 $\pm$ 0.439 0.765
196 XMMU J031455.9-550046 5.3 $\pm$ 1.0 24.6 1.96 0.128 $\pm$ 0.244 -0.777 $\pm$ 0.263 - 0.850
197 XMMU J031428.2-551933 2.5 $\pm$ 0.5 16.2 1.67 1.000 $\pm$ 0.440 0.565 $\pm$ 0.343 -0.089 $\pm$ 0.284 0.406
204 XMMU J031424.8-550204 3.5 $\pm$ 0.8 12.1 1.99 0.583 $\pm$ 0.510 -0.321 $\pm$ 0.472 -0.022 $\pm$ 0.649 0.558
205 XMMU J031319.1-552511 11.9 $\pm$ 2.0 43.2 1.69 0.325 $\pm$ 0.256 -0.637 $\pm$ 0.252 -1.000 $\pm$ 0.671 1.919
209 XMMU J031602.3-550248 4.7 $\pm$ 0.8 23.0 1.54 0.349 $\pm$ 0.259 -0.493 $\pm$ 0.290 -1.000 $\pm$ 0.390 0.756
217 XMMU J031419.4-551641 1.8 $\pm$ 0.5 5.6 2.15 1.000 $\pm$ 0.247 -1.000 $\pm$ 0.271 1.000 $\pm$ 0.473 0.286
218 XMMU J031405.6-545538 8.1 $\pm$ 2.3 11.1 2.04 0.102 $\pm$ 0.426 -0.562 $\pm$ 0.384 - 1.305
219 XMMU J031308.2-551905 14.7 $\pm$ 1.7 82.0 1.30 0.844 $\pm$ 0.170 -0.382 $\pm$ 0.160 -0.310 $\pm$ 0.283 2.370
220 XMMU J031550.3-550144 5.3 $\pm$ 1.1 19.7 1.85 0.362 $\pm$ 0.261 -0.857 $\pm$ 0.229 - 0.863
221 XMMU J031449.1-551433 2.6 $\pm$ 0.4 29.1 1.39 - 0.906 $\pm$ 0.217 -0.164 $\pm$ 0.235 0.417
222 XMMU J031644.2-552006 3.1 $\pm$ 0.9 8.0 2.08 -0.445 $\pm$ 0.704 0.636 $\pm$ 0.485 -1.000 $\pm$ 0.343 0.504
223 XMMU J031647.7-551409 7.2 $\pm$ 1.1 40.3 1.41 0.694 $\pm$ 0.178 -0.439 $\pm$ 0.177 -0.076 $\pm$ 0.326 1.156
224 XMMU J031304.9-551606 8.9 $\pm$ 1.2 55.4 1.52 - 0.827 $\pm$ 0.228 -0.207 $\pm$ 0.219 1.443
225 XMMU J031332.1-550044 7.7 $\pm$ 1.2 29.5 1.61 1.000 $\pm$ 0.074 -0.151 $\pm$ 0.213 -0.394 $\pm$ 0.292 1.239
226 XMMU J031649.7-552508 7.7 $\pm$ 1.7 15.7 2.00 0.718 $\pm$ 0.280 -1.000 $\pm$ 0.156 - 1.243
229 XMMU J031606.1-551443 1.7 $\pm$ 0.6 5.4 2.03 -0.858 $\pm$ 0.848 0.891 $\pm$ 0.659 -1.000 $\pm$ 0.547 0.268
232 XMMU J031441.9-550816 4.7 $\pm$ 0.6 53.3 1.21 0.563 $\pm$ 0.210 -0.563 $\pm$ 0.198 0.393 $\pm$ 0.266 0.756
236 XMMU J031332.1-545912 4.8 $\pm$ 1.2 9.5 1.97 0.924 $\pm$ 0.442 -0.543 $\pm$ 0.482 0.202 $\pm$ 0.777 0.769
237 XMMU J031431.9-553401 22.7 $\pm$ 6.1 23.3 1.87 0.790 $\pm$ 0.259 -0.356 $\pm$ 0.319 -0.413 $\pm$ 0.510 3.667
241 XMMU J031322.0-551350 5.8 $\pm$ 0.9 30.9 1.59 0.653 $\pm$ 0.214 -0.893 $\pm$ 0.134 0.468 $\pm$ 0.583 0.933
242 XMMU J031604.3-550716 4.1 $\pm$ 0.7 36.6 1.47 0.423 $\pm$ 0.257 -0.405 $\pm$ 0.275 -0.761 $\pm$ 0.470 0.668
246 XMMU J031357.0-550108 4.4 $\pm$ 1.0 13.2 2.50 1.000 $\pm$ 0.199 -0.612 $\pm$ 0.279 -0.091 $\pm$ 0.640 0.708
247 XMMU J031439.0-551441 1.6 $\pm$ 0.4 9.2 1.86 1.000 $\pm$ 0.521 0.268 $\pm$ 0.574 -1.000 $\pm$ 0.434 0.263
248 XMMU J031629.7-551702 5.9 $\pm$ 0.9 49.4 1.40 0.430 $\pm$ 0.399 0.319 $\pm$ 0.241 -0.442 $\pm$ 0.281 0.951
251 XMMU J031434.6-552712 3.9 $\pm$ 0.9 17.4 1.76 0.755 $\pm$ 0.365 -0.682 $\pm$ 0.453 - 0.626
253 XMMU J031438.2-550648 2.6 $\pm$ 0.5 16.6 1.65 - 1.000 $\pm$ 0.372 -0.256 $\pm$ 0.312 0.417
255 XMMU J031446.2-550948 2.2 $\pm$ 0.4 12.4 1.58 0.307 $\pm$ 0.260 -0.512 $\pm$ 0.297 - 0.359
256 XMMU J031445.7-551957 2.0 $\pm$ 0.5 8.5 1.86 0.727 $\pm$ 0.324 -0.269 $\pm$ 0.351 -0.384 $\pm$ 0.576 0.327
264 XMMU J031643.2-552924 14.5 $\pm$ 2.5 30.7 1.68 0.411 $\pm$ 0.270 -0.704 $\pm$ 0.271 -1.000 $\pm$ 0.943 2.338
265 XMMU J031336.6-550018 3.5 $\pm$ 1.0 8.7 2.01 1.000 $\pm$ 0.379 -0.646 $\pm$ 0.322 - 0.572
267 XMMU J031422.9-551708 2.9 $\pm$ 0.5 18.9 1.61 0.566 $\pm$ 0.336 -0.209 $\pm$ 0.311 -0.043 $\pm$ 0.380 0.474
268 XMMU J031624.0-551520 3.8 $\pm$ 0.7 26.3 1.56 0.332 $\pm$ 0.354 -0.214 $\pm$ 0.328 -1.000 $\pm$ 0.578 0.609
272 XMMU J031650.4-551732 3.3 $\pm$ 0.9 9.5 2.33 - 0.838 $\pm$ 0.328 -0.607 $\pm$ 0.431 0.530
275 XMMU J031534.3-552249 3.2 $\pm$ 0.6 21.7 1.50 1.000 $\pm$ 0.323 -0.233 $\pm$ 0.285 -1.000 $\pm$ 0.742 0.519
280 XMMU J031324.8-551118 4.0 $\pm$ 0.8 12.5 1.71 0.622 $\pm$ 0.474 0.160 $\pm$ 0.328 -0.568 $\pm$ 0.336 0.642
281 XMMU J031557.9-550601 2.7 $\pm$ 0.6 12.2 1.74 - 0.568 $\pm$ 0.338 -0.847 $\pm$ 0.323 0.438
282 XMMU J031530.4-552509 3.0 $\pm$ 0.7 13.4 1.78 -0.142 $\pm$ 0.354 -0.706 $\pm$ 0.455 - 0.491
286 XMMU J031207.3-550932 13.7 $\pm$ 2.5 29.6 2.06 0.684 $\pm$ 0.392 -1.000 $\pm$ 0.195 - 2.208
290 XMMU J031201.9-550729 20.2 $\pm$ 2.8 57.0 1.41 -0.104 $\pm$ 0.239 -0.383 $\pm$ 0.323 -0.756 $\pm$ 0.428 3.257
292 XMMU J031449.4-545817 14.1 $\pm$ 2.1 75.1 1.40 0.930 $\pm$ 0.159 -0.549 $\pm$ 0.189 -1.000 $\pm$ 0.525 2.272
298 XMMU J031549.8-550248 3.1 $\pm$ 0.8 6.6 2.17 -0.490 $\pm$ 0.474 -0.569 $\pm$ 0.853 0.752 $\pm$ 0.504 0.493
300 XMMU J031501.6-551413 1.2 $\pm$ 0.3 5.7 2.04 0.666 $\pm$ 0.399 -0.872 $\pm$ 0.351 - 0.187
305 XMMU J031434.4-551502 1.9 $\pm$ 0.5 6.2 2.10 0.579 $\pm$ 0.161 -0.807 $\pm$ 0.142 -1.000 $\pm$ 0.676 0.306
306 XMMU J031417.7-550748 1.7 $\pm$ 0.5 5.5 1.93 1.000 $\pm$ 0.594 -0.342 $\pm$ 0.645 0.646 $\pm$ 0.389 0.279
308 XMMU J031318.0-551551 4.2 $\pm$ 1.1 8.3 2.29 0.410 $\pm$ 0.257 -0.473 $\pm$ 0.288 -0.720 $\pm$ 0.451 0.675
309 XMMU J031709.8-550750 4.9 $\pm$ 1.5 9.7 2.12 1.000 $\pm$ 0.293 -0.329 $\pm$ 0.574 -1.000 $\pm$ 0.747 0.797
310 XMMU J031458.4-551323 1.4 $\pm$ 0.4 6.6 1.90 0.266 $\pm$ 0.511 -0.223 $\pm$ 0.504 -1.000 $\pm$ 0.525 0.218
311 XMMU J031630.2-551103 2.4 $\pm$ 0.7 7.1 2.00 - - -0.018 $\pm$ 0.526 0.380
313 XMMU J031607.1-552522 4.6 $\pm$ 1.2 8.5 1.99 1.000 $\pm$ 0.237 -0.284 $\pm$ 0.507 -0.025 $\pm$ 0.679 0.748
317 XMMU J031333.2-550322 4.5 $\pm$ 0.9 17.9 2.13 1.000 $\pm$ 0.682 0.683 $\pm$ 0.249 -0.805 $\pm$ 0.242 0.721
318 XMMU J031449.2-545941 4.2 $\pm$ 1.2 9.4 2.32 0.615 $\pm$ 0.490 -1.000 $\pm$ 0.453 - 0.677
321 XMMU J031422.9-550842 1.7 $\pm$ 0.4 7.4 2.03 0.406 $\pm$ 0.439 -1.000 $\pm$ 0.191 - 0.272
325 XMMU J031443.4-552029 3.6 $\pm$ 0.7 16.3 1.59 0.498 $\pm$ 0.269 -0.346 $\pm$ 0.266 0.085 $\pm$ 0.360 0.574
332 XMMU J031402.0-552720 7.1 $\pm$ 1.5 17.0 1.80 0.332 $\pm$ 0.266 -0.665 $\pm$ 0.279 -1.000 $\pm$ 0.706 1.139
334 XMMU J031631.7-551228 6.4 $\pm$ 1.0 73.4 1.29 0.844 $\pm$ 0.154 -0.761 $\pm$ 0.141 -0.262 $\pm$ 0.654 1.032
335 XMMU J031357.2-550432 2.6 $\pm$ 0.7 7.7 1.95 1.000 $\pm$ 0.421 -0.147 $\pm$ 0.350 -1.000 $\pm$ 0.677 0.415
338 XMMU J031227.1-551221 10.2 $\pm$ 2.4 13.3 1.91 0.040 $\pm$ 0.380 -0.290 $\pm$ 0.406 -1.000 $\pm$ 0.586 1.647
339 XMMU J031432.3-552927 6.0 $\pm$ 1.4 9.8 2.42 -0.321 $\pm$ 0.359 0.271 $\pm$ 0.385 -1.000 $\pm$ 0.665 0.964
345 XMMU J031316.7-552239 13.3 $\pm$ 1.7 63.6 1.33 0.103 $\pm$ 0.172 -0.457 $\pm$ 0.192 -1.000 $\pm$ 0.632 2.153
346 XMMU J031633.5-550412 2.9 $\pm$ 0.8 17.0 2.13 - - - 0.462
349 XMMU J031541.0-552227 4.1 $\pm$ 0.9 14.9 1.75 0.635 $\pm$ 0.231 -0.540 $\pm$ 0.210 0.145 $\pm$ 0.352 0.655
355 XMMU J031517.8-545953 6.1 $\pm$ 1.3 13.2 2.13 0.156 $\pm$ 0.463 0.340 $\pm$ 0.317 -0.382 $\pm$ 0.340 0.979
356 XMMU J031519.6-552333 2.2 $\pm$ 0.7 5.7 2.06 -1.000 $\pm$ 0.523 - -0.305 $\pm$ 0.894 0.349
360 XMMU J031312.0-551718 5.5 $\pm$ 1.3 15.6 1.79 1.000 $\pm$ 0.931 -0.096 $\pm$ 0.459 -0.207 $\pm$ 0.585 0.881
361 XMMU J031314.6-550320 5.5 $\pm$ 1.1 12.4 1.93 0.254 $\pm$ 0.427 0.069 $\pm$ 0.362 -0.210 $\pm$ 0.372 0.882
364 XMMU J031412.3-552555 6.7 $\pm$ 1.0 29.9 1.64 0.379 $\pm$ 0.196 -0.611 $\pm$ 0.204 -1.000 $\pm$ 0.530 1.077
365 XMMU J031526.1-551937 2.5 $\pm$ 0.6 7.3 2.37 0.746 $\pm$ 0.381 -0.052 $\pm$ 0.345 -0.068 $\pm$ 0.417 0.401
367 XMMU J031635.1-550352 11.4 $\pm$ 2.2 50.7 1.87 0.825 $\pm$ 0.226 -0.455 $\pm$ 0.243 -0.263 $\pm$ 0.430 1.848
371 XMMU J031620.5-550330 3.5 $\pm$ 0.9 13.1 1.94 - 1.000 $\pm$ 0.734 0.341 $\pm$ 0.401 0.561
373 XMMU J031502.6-550508 2.3 $\pm$ 0.6 6.5 2.00 -0.264 $\pm$ 0.417 0.061 $\pm$ 0.488 -0.237 $\pm$ 0.555 0.373
375 XMMU J031447.2-553258 15.2 $\pm$ 3.3 19.6 2.06 0.602 $\pm$ 0.376 -1.000 $\pm$ 0.515 1.000 $\pm$ 0.575 2.459
376 XMMU J031717.8-551948 5.1 $\pm$ 1.5 12.9 1.96 0.659 $\pm$ 0.487 -0.229 $\pm$ 0.534 - 0.819
377 XMMU J031653.3-550838 4.6 $\pm$ 1.1 18.4 1.74 0.479 $\pm$ 0.358 -0.525 $\pm$ 0.361 -0.442 $\pm$ 0.755 0.743
380 XMMU J031449.7-552336 2.1 $\pm$ 0.7 5.0 2.24 1.000 $\pm$ 0.312 -1.000 $\pm$ 0.486 - 0.335
381 XMMU J031644.6-552707 25.5 $\pm$ 2.8 162.7 1.15 0.386 $\pm$ 0.159 -0.698 $\pm$ 0.158 0.220 $\pm$ 0.358 4.112
382 XMMU J031247.4-551653 8.9 $\pm$ 1.8 28.2 1.89 0.848 $\pm$ 0.270 -0.927 $\pm$ 0.167 - 1.445
385 XMMU J031318.2-550537 5.6 $\pm$ 1.0 24.9 1.57 0.844 $\pm$ 0.364 0.346 $\pm$ 0.239 -0.369 $\pm$ 0.247 0.910
388 XMMU J031401.2-545957 100.7 $\pm$ 5.8 775.3 0.71 0.128 $\pm$ 0.063 -0.652 $\pm$ 0.060 -0.284 $\pm$ 0.162 16.26
389 XMMU J031539.0-550336 2.5 $\pm$ 0.7 7.3 1.96 0.710 $\pm$ 0.326 -0.352 $\pm$ 0.349 -0.904 $\pm$ 0.570 0.399
397 XMMU J031638.3-545924 15.7 $\pm$ 2.5 57.8 1.50 0.560 $\pm$ 0.235 -0.506 $\pm$ 0.228 -0.603 $\pm$ 0.441 2.529
403 XMMU J031225.8-550554 18.6 $\pm$ 2.2 67.9 1.41 0.151 $\pm$ 0.182 -0.448 $\pm$ 0.187 -0.730 $\pm$ 0.309 3.005
408 XMMU J031554.2-551004 2.3 $\pm$ 0.5 7.9 1.85 1.000 $\pm$ 0.214 -0.051 $\pm$ 0.327 -0.129 $\pm$ 0.376 0.365
410 XMMU J031502.0-552742 4.1 $\pm$ 1.1 5.8 2.17 0.146 $\pm$ 0.623 -0.383 $\pm$ 0.684 0.204 $\pm$ 0.830 0.662
412 XMMU J031218.4-550648 7.0 $\pm$ 1.9 6.9 2.72 0.623 $\pm$ 0.300 -1.000 $\pm$ 0.137 - 1.134
413 XMMU J031723.0-550222 9.5 $\pm$ 2.4 14.0 2.20 0.187 $\pm$ 0.796 0.502 $\pm$ 0.448 -0.799 $\pm$ 0.401 1.526
421 XMMU J031431.3-550943 1.9 $\pm$ 0.4 10.1 2.21 0.842 $\pm$ 0.241 -1.000 $\pm$ 0.238 - 0.304
422 XMMU J031531.6-551049 2.3 $\pm$ 0.4 14.5 1.80 0.520 $\pm$ 0.452 0.229 $\pm$ 0.283 -0.923 $\pm$ 0.295 0.371
431 XMMU J031540.9-545649 6.6 $\pm$ 1.3 16.1 1.84 0.706 $\pm$ 0.284 -0.531 $\pm$ 0.254 -1.000 $\pm$ 0.426 1.060
433 XMMU J031436.4-552739 3.7 $\pm$ 1.0 7.6 2.33 - 0.933 $\pm$ 0.255 -0.762 $\pm$ 0.330 0.595
437 XMMU J031534.0-550259 3.6 $\pm$ 0.7 14.9 1.64 0.645 $\pm$ 0.221 -0.609 $\pm$ 0.236 -1.000 $\pm$ 0.440 0.582
438 XMMU J031521.8-552338 2.1 $\pm$ 0.6 6.2 2.22 0.223 $\pm$ 0.412 -1.000 $\pm$ 0.181 1.000 $\pm$ 0.318 0.340
444 XMMU J031318.1-550600 3.9 $\pm$ 0.9 11.5 1.95 1.000 $\pm$ 0.999 0.617 $\pm$ 0.307 -0.358 $\pm$ 0.276 0.628
447 XMMU J031448.7-550037 3.6 $\pm$ 1.0 6.4 2.71 0.641 $\pm$ 0.401 -0.355 $\pm$ 0.362 -1.000 $\pm$ 0.732 0.587
449 XMMU J031543.3-550742 2.2 $\pm$ 0.6 6.4 2.40 -0.022 $\pm$ 0.395 -0.065 $\pm$ 0.412 -1.000 $\pm$ 0.655 0.357
452 XMMU J031618.2-545649 11.0 $\pm$ 2.2 23.9 1.77 0.545 $\pm$ 0.220 -0.595 $\pm$ 0.205 -0.921 $\pm$ 0.578 1.781
453 XMMU J031323.6-550445 3.9 $\pm$ 1.0 5.2 2.46 1.000 $\pm$ 0.160 0.019 $\pm$ 0.339 -0.773 $\pm$ 0.395 0.635
456 XMMU J031632.5-552743 7.5 $\pm$ 1.7 15.3 1.85 0.464 $\pm$ 0.272 -1.000 $\pm$ 0.100 1.000 $\pm$ 0.257 1.218
460 XMMU J031342.7-550700 5.4 $\pm$ 0.8 36.6 1.44 0.410 $\pm$ 0.190 -0.982 $\pm$ 0.124 - 0.872
461 XMMU J031714.5-551252 4.2 $\pm$ 1.6 6.1 2.29 - 1.000 $\pm$ 0.285 -0.407 $\pm$ 0.440 0.675
462 XMMU J031506.2-551626 1.9 $\pm$ 0.4 9.2 1.79 1.000 $\pm$ 0.587 0.165 $\pm$ 0.269 -0.384 $\pm$ 0.343 0.301
463 XMMU J031625.3-550839 3.1 $\pm$ 0.8 18.8 1.61 0.979 $\pm$ 0.305 -0.592 $\pm$ 0.441 - 0.506
464 XMMU J031250.3-550430 4.9 $\pm$ 1.2 11.4 2.05 0.083 $\pm$ 0.378 -1.000 $\pm$ 0.865 - 0.791
468 XMMU J031253.7-551005 9.3 $\pm$ 1.4 82.7 1.29 -0.984 $\pm$ 0.057 - - 1.506
470 XMMU J031521.4-552123 3.0 $\pm$ 0.6 15.0 1.69 1.000 $\pm$ 0.186 -0.038 $\pm$ 0.259 -0.675 $\pm$ 0.414 0.477
473 XMMU J031532.5-551116 1.3 $\pm$ 0.4 5.3 3.35 1.000 $\pm$ 0.523 0.039 $\pm$ 0.347 -1.000 $\pm$ 0.163 0.216
475 XMMU J031352.3-550347 3.6 $\pm$ 0.8 10.9 2.05 0.245 $\pm$ 0.323 -1.000 $\pm$ 0.206 1.000 $\pm$ 0.677 0.586
479 XMMU J031600.2-545812 4.5 $\pm$ 1.4 8.2 2.13 0.829 $\pm$ 0.281 -0.437 $\pm$ 0.298 -0.848 $\pm$ 0.639 0.729
480 XMMU J031653.5-551234 4.8 $\pm$ 1.2 11.1 2.30 0.667 $\pm$ 0.354 0.041 $\pm$ 0.285 -0.604 $\pm$ 0.408 0.777
481 XMMU J031535.4-551616 2.0 $\pm$ 0.4 12.3 1.69 0.959 $\pm$ 0.599 0.075 $\pm$ 0.463 0.291 $\pm$ 0.326 0.319
483 XMMU J031405.7-550708 4.1 $\pm$ 0.9 15.6 1.60 0.309 $\pm$ 0.353 -0.267 $\pm$ 0.334 -1.000 $\pm$ 0.539 0.670
485 XMMU J031527.4-551618 1.4 $\pm$ 0.4 5.6 1.95 - 0.652 $\pm$ 0.587 0.071 $\pm$ 0.426 0.229
489 XMMU J031452.6-550054 3.5 $\pm$ 0.9 5.0 2.36 -0.004 $\pm$ 0.274 -0.611 $\pm$ 0.329 -1.000 $\pm$ 0.842 0.563
496 XMMU J031245.3-551648 10.2 $\pm$ 2.1 21.8 1.84 0.189 $\pm$ 0.281 -0.850 $\pm$ 0.212 - 1.649
497 XMMU J031457.7-550934 1.7 $\pm$ 0.4 7.0 1.92 0.357 $\pm$ 0.317 -0.841 $\pm$ 0.305 - 0.267
498 XMMU J031506.3-551400 1.6 $\pm$ 0.4 6.1 2.41 -0.091 $\pm$ 0.317 -1.000 $\pm$ 0.467 - 0.264
500 XMMU J031642.0-552839 6.3 $\pm$ 1.8 5.4 2.37 1.000 $\pm$ 0.469 0.353 $\pm$ 0.368 -1.000 $\pm$ 0.232 1.025
501 XMMU J031355.0-545622 6.3 $\pm$ 1.7 7.5 2.57 0.325 $\pm$ 0.345 -1.000 $\pm$ 0.170 1.000 $\pm$ 0.516 1.018
505 XMMU J031539.6-550801 2.6 $\pm$ 0.6 8.5 1.76 0.026 $\pm$ 0.294 -0.435 $\pm$ 0.341 -0.052 $\pm$ 0.573 0.416
511 XMMU J031528.1-551313 1.8 $\pm$ 0.4 11.0 1.65 0.181 $\pm$ 0.285 -0.758 $\pm$ 0.363 - 0.299
512 XMMU J031348.4-551309 5.2 $\pm$ 0.7 38.6 1.63 0.692 $\pm$ 0.309 -0.230 $\pm$ 0.260 -0.852 $\pm$ 0.399 0.839
513 XMMU J031445.6-550016 5.3 $\pm$ 1.0 24.5 1.57 0.814 $\pm$ 0.220 -0.951 $\pm$ 0.186 0.900 $\pm$ 0.368 0.854
514 XMMU J031343.5-552901 5.8 $\pm$ 2.0 7.8 2.17 0.590 $\pm$ 0.447 -0.585 $\pm$ 0.420 -0.011 $\pm$ 0.885 0.943
516 XMMU J031213.8-551252 7.8 $\pm$ 3.0 5.9 2.54 1.000 $\pm$ 0.231 -0.556 $\pm$ 0.308 -1.000 $\pm$ 0.610 1.264
518 XMMU J031457.2-552924 6.8 $\pm$ 1.1 33.9 1.49 0.672 $\pm$ 0.294 -1.000 $\pm$ 0.093 - 1.093
524 XMMU J031314.1-550419 7.6 $\pm$ 1.1 50.6 1.34 0.681 $\pm$ 0.274 -0.032 $\pm$ 0.206 -0.140 $\pm$ 0.228 1.222
526 XMMU J031428.6-553307 8.9 $\pm$ 2.7 9.2 2.03 0.120 $\pm$ 0.511 -0.158 $\pm$ 0.472 - 1.443
528 XMMU J031711.5-551228 6.2 $\pm$ 1.5 32.3 1.65 -0.453 $\pm$ 0.357 -0.236 $\pm$ 0.594 - 0.998
531 XMMU J031338.3-550352 20.1 $\pm$ 1.8 241.9 1.01 0.183 $\pm$ 0.123 -0.527 $\pm$ 0.122 -0.453 $\pm$ 0.270 3.244
532 XMMU J031521.7-545544 6.3 $\pm$ 1.5 10.0 2.26 1.000 $\pm$ 0.228 -0.235 $\pm$ 0.298 -0.701 $\pm$ 0.465 1.015
535 XMMU J031653.5-551154 3.4 $\pm$ 1.0 10.0 2.00 0.294 $\pm$ 0.371 -0.786 $\pm$ 0.430 - 0.554
536 XMMU J031450.3-550410 1.4 $\pm$ 0.5 6.9 2.29 -0.072 $\pm$ 0.688 - - 0.223
541 XMMU J031700.8-552131 3.5 $\pm$ 1.2 13.7 2.18 - - - 0.561
543 XMMU J031250.3-551100 3.4 $\pm$ 1.4 6.4 2.16 - - -0.032 $\pm$ 0.689 0.552
544 XMMU J031528.7-552650 3.0 $\pm$ 0.9 5.5 2.34 0.094 $\pm$ 0.316 -0.825 $\pm$ 0.454 - 0.489
547 XMMU J031527.0-550257 3.2 $\pm$ 0.8 9.2 1.80 1.000 $\pm$ 0.433 -0.857 $\pm$ 0.397 - 0.510
550 XMMU J031648.5-552105 2.3 $\pm$ 0.9 9.6 2.32 - - 1.000 $\pm$ 0.236 0.375
551 XMMU J031243.0-551159 6.5 $\pm$ 1.5 11.0 2.11 0.507 $\pm$ 0.317 -0.904 $\pm$ 0.224 0.805 $\pm$ 0.442 1.044
557 XMMU J031441.6-552138 1.6 $\pm$ 0.5 5.2 2.30 -0.074 $\pm$ 0.392 -1.000 $\pm$ 0.265 - 0.254
559 XMMU J031617.3-551428 5.2 $\pm$ 0.8 37.0 1.51 0.131 $\pm$ 0.200 -0.753 $\pm$ 0.240 -0.492 $\pm$ 0.925 0.832
566 XMMU J031653.3-552155 3.0 $\pm$ 1.0 6.7 2.81 - 0.500 $\pm$ 0.638 -0.392 $\pm$ 0.672 0.487
570 XMMU J031309.8-551224 3.7 $\pm$ 1.0 5.4 2.17 0.208 $\pm$ 0.690 -1.000 $\pm$ 0.493 - 0.605
572 XMMU J031249.6-551539 4.4 $\pm$ 1.2 7.8 2.37 -1.000 $\pm$ 0.723 - - 0.718
579 XMMU J031547.2-551419 1.7 $\pm$ 0.4 6.8 1.94 0.525 $\pm$ 0.270 -0.847 $\pm$ 0.237 - 0.282
582 XMMU J031630.6-551130 4.8 $\pm$ 0.9 18.3 1.78 0.205 $\pm$ 0.220 -0.585 $\pm$ 0.238 -0.658 $\pm$ 0.603 0.768
584 XMMU J031652.3-553000 9.3 $\pm$ 3.0 6.2 2.16 0.262 $\pm$ 0.555 -1.000 $\pm$ 0.388 - 1.497
585 XMMU J031309.2-551142 10.4 $\pm$ 1.3 74.1 1.37 0.542 $\pm$ 0.150 -0.919 $\pm$ 0.111 - 1.679
593 XMMU J031511.3-551202 2.0 $\pm$ 0.4 12.5 1.83 0.572 $\pm$ 0.222 -0.878 $\pm$ 0.181 - 0.327
595 XMMU J031405.8-550909 2.7 $\pm$ 0.7 5.7 2.27 0.565 $\pm$ 0.353 -0.410 $\pm$ 0.350 -0.421 $\pm$ 0.668 0.433
596 XMMU J031707.0-551915 8.4 $\pm$ 1.6 20.0 1.59 0.361 $\pm$ 0.233 -0.739 $\pm$ 0.225 0.014 $\pm$ 0.677 1.353
597 XMMU J031454.5-545810 10.3 $\pm$ 1.6 57.6 1.40 0.480 $\pm$ 0.214 -0.821 $\pm$ 0.155 -1.000 $\pm$ 0.768 1.662
607 XMMU J031651.3-551306 7.7 $\pm$ 1.2 39.9 1.47 -0.218 $\pm$ 0.221 -0.468 $\pm$ 0.319 0.042 $\pm$ 0.511 1.248
608 XMMU J031349.8-551259 4.3 $\pm$ 0.7 28.4 1.36 0.456 $\pm$ 0.197 -0.557 $\pm$ 0.205 -0.099 $\pm$ 0.424 0.691
610 XMMU J031552.0-551222 3.6 $\pm$ 0.6 39.7 1.39 0.426 $\pm$ 0.404 0.302 $\pm$ 0.262 -0.538 $\pm$ 0.289 0.584
611 XMMU J031335.8-545657 17.9 $\pm$ 2.3 80.3 1.27 0.103 $\pm$ 0.165 -0.822 $\pm$ 0.151 -0.638 $\pm$ 0.785 2.893
615 XMMU J031459.8-550356 5.5 $\pm$ 0.7 52.0 1.34 0.036 $\pm$ 0.233 -0.178 $\pm$ 0.265 -0.629 $\pm$ 0.363 0.891
616 XMMU J031246.4-545947 12.8 $\pm$ 1.9 47.8 1.46 0.458 $\pm$ 0.246 -0.604 $\pm$ 0.226 -0.173 $\pm$ 0.495 2.061
618 XMMU J031521.6-550349 3.1 $\pm$ 0.9 8.3 2.67 0.464 $\pm$ 0.425 -0.666 $\pm$ 0.383 - 0.502
621 XMMU J031529.7-550022 2.1 $\pm$ 0.8 11.8 2.15 - - 1.000 $\pm$ 0.717 0.336
627 XMMU J031523.9-550408 2.3 $\pm$ 0.6 7.1 2.43 1.000 $\pm$ 0.306 -0.805 $\pm$ 0.235 - 0.372
630 XMMU J031625.0-551122 1.5 $\pm$ 0.8 9.1 2.18 0.619 $\pm$ 0.472 -1.000 $\pm$ 0.292 - 0.239
631 XMMU J031532.8-551159 2.0 $\pm$ 0.4 7.5 1.72 0.673 $\pm$ 0.320 -0.634 $\pm$ 0.308 0.328 $\pm$ 0.504 0.323
632 XMMU J031624.5-552135 1.2 $\pm$ 0.6 5.5 2.25 - - - 0.193
633 XMMU J031532.5-545909 4.0 $\pm$ 1.1 8.0 2.01 -0.788 $\pm$ 0.346 0.437 $\pm$ 0.829 0.131 $\pm$ 0.699 0.641
652 XMMU J031530.3-550437 14.0 $\pm$ 1.0 328.4 0.89 0.350 $\pm$ 0.106 -0.765 $\pm$ 0.096 0.269 $\pm$ 0.262 2.262
653 XMMU J031647.5-551229 6.9 $\pm$ 1.1 46.2 1.31 0.397 $\pm$ 0.212 -0.615 $\pm$ 0.227 -0.298 $\pm$ 0.616 1.119
654 XMMU J031706.1-552716 34.8 $\pm$ 3.6 150.3 1.18 0.649 $\pm$ 0.137 -0.632 $\pm$ 0.138 -0.098 $\pm$ 0.344 5.627
656 XMMU J031326.1-550427 35.3 $\pm$ 3.1 320.8 0.98 1.000 $\pm$ 0.033 -0.183 $\pm$ 0.096 -0.470 $\pm$ 0.135 5.695
660 XMMU J031537.2-545947 3.5 $\pm$ 1.0 5.1 2.59 0.730 $\pm$ 0.448 -0.080 $\pm$ 0.414 -1.000 $\pm$ 0.320 0.568
661 XMMU J031706.8-552435 7.9 $\pm$ 2.3 12.7 2.53 0.805 $\pm$ 0.490 -1.000 $\pm$ 0.568 1.000 $\pm$ 0.494 1.275
664 XMMU J031611.1-552117 2.7 $\pm$ 0.7 6.2 2.23 0.249 $\pm$ 0.330 -0.631 $\pm$ 0.380 - 0.444
665 XMMU J031645.7-545900 5.9 $\pm$ 1.8 7.5 2.44 0.728 $\pm$ 0.354 -0.909 $\pm$ 0.316 - 0.958
667 XMMU J031348.0-551205 5.4 $\pm$ 1.0 25.1 2.79 -0.244 $\pm$ 0.758 -1.000 $\pm$ 0.913 - 0.875
673 XMMU J031540.4-551221 11.0 $\pm$ 0.8 334.6 0.88 0.788 $\pm$ 0.095 -0.534 $\pm$ 0.103 -0.068 $\pm$ 0.204 1.777
675 XMMU J031624.6-551143 9.8 $\pm$ 1.0 122.8 1.07 0.378 $\pm$ 0.123 -0.933 $\pm$ 0.087 - 1.589
676 XMMU J031641.5-552408 4.1 $\pm$ 1.1 6.1 2.08 1.000 $\pm$ 0.178 -0.218 $\pm$ 0.357 -0.124 $\pm$ 0.481 0.656
680 XMMU J031647.6-552142 2.3 $\pm$ 0.9 9.9 1.96 0.953 $\pm$ 0.891 -1.000 $\pm$ 0.441 1.000 $\pm$ 0.510 0.375
681 XMMU J031248.9-550705 1.6 $\pm$ 0.8 5.6 2.64 0.819 $\pm$ 0.903 - - 0.265
686 XMMU J031346.7-551148 94.0 $\pm$ 2.2 4192.0 0.73 0.287 $\pm$ 0.035 -0.633 $\pm$ 0.033 -0.448 $\pm$ 0.089 15.18
687 XMMU J031302.5-552604 16.3 $\pm$ 3.1 26.4 1.88 0.252 $\pm$ 0.226 -0.450 $\pm$ 0.237 -0.952 $\pm$ 0.296 2.626
688 XMMU J031145.8-550653 189.3 $\pm$ 11.1 775.6 0.94 0.293 $\pm$ 0.089 -0.587 $\pm$ 0.086 -0.326 $\pm$ 0.189 30.56
689 XMMU J031140.1-550613 29.5 $\pm$ 4.0 50.3 1.84 0.094 $\pm$ 0.186 -0.723 $\pm$ 0.174 - 4.761
690 XMMU J031135.6-550314 57.4 $\pm$ 9.1 86.2 1.80 0.270 $\pm$ 0.132 -0.582 $\pm$ 0.135 -0.591 $\pm$ 0.326 9.267
691 XMMU J031134.5-550608 28.0 $\pm$ 4.3 46.9 1.64 0.579 $\pm$ 0.178 -0.794 $\pm$ 0.141 -0.462 $\pm$ 0.592 4.524
692 XMMU J031136.3-550514 36.3 $\pm$ 4.7 73.0 1.49 -0.005 $\pm$ 0.198 -0.439 $\pm$ 0.227 -0.287 $\pm$ 0.405 5.855
693 XMMU J031145.9-550702 336.5 $\pm$ 20.0 418.0 0.98 0.191 $\pm$ 0.201 -0.586 $\pm$ 0.205 -0.458 $\pm$ 0.476 54.32
694 XMMU J031146.4-550711 97.3 $\pm$ 10.6 53.0 1.24 0.283 $\pm$ 0.048 -0.609 $\pm$ 0.046 -0.411 $\pm$ 0.109 15.71
695 XMMU J031259.1-552556 45.5 $\pm$ 6.3 91.5 1.83 0.307 $\pm$ 0.139 -0.699 $\pm$ 0.130 0.106 $\pm$ 0.330 7.347
696 XMMU J031152.2-551049 28.0 $\pm$ 4.7 41.8 1.84 0.348 $\pm$ 0.193 -0.918 $\pm$ 0.147 - 4.527

Appendix B: Marginal X-ray source classification

In this section we include spectroscopic classifications that are possible counterparts to X-ray sources with a detection likelihood ML < 5.0. We list the optical and the X-ray properties of these sources. The objects given here are included in the optical and X-ray image section (Appendix C).

B.1 Optical data table


   
Table B.1: Optical properties of candidate counterparts of marginal Marano Field XMM-Newton X-ray sources. For a detailed explanation of the individual columns see Sect. 3.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
No RA Dec Dist $_{\rm {OX}}$ K R Class z Flags $\log(L_{\rm {X_{OBS}}}$) $M_{\rm {B}}$ $\alpha _{\rm OX}$ $N_{\rm {H}}$ $\log(L_{\rm {X_{INT}}}$) Rem.
137A 3 16 12.9 -55 08 47 1.21 17.55 19.54 B 1.721 111 43.75 -24.90 2.26 $\rm 17.4_{-10.2}^{+16.7}$ 44.42 1
160A 3 16 43.5 -55 22 40 6.41 - 22.34 - - - - - - - -  
160B 3 16 44.3 -55 22 43 1.43 - 21.96 N 1.020 100 43.10 - - - -  
289A 3 16 47.7 -55 10 10 4.24 - 23.01 - - - - - - - -  
315A 3 13 45.5 -55 04 48 6.50 15.92 20.09 S 0.000 011 - - - - - C
315B 3 13 46.0 -55 04 46 4.32 - 23.06 N 0.836 110 42.93 - - - - C
331A 3 16 36.2 -55 09 32 2.72 19.73 22.13 B 1.876 111 43.89 -22.53 1.80 $\rm0.52_{-0.52}^{+0.69}$ 44.79 2, 5
341A 3 13 38.2 -55 21 38 8.00 19.48 20.64 B 2.784 1 - - 44.69 -24.81 1.90 - - 2
366A 3 15 38.8 -55 20 03 2.75 15.50 18.87 S 0.00 011 - - - - -  
386A 3 13 39.9 -55 07 21 5.11 17.70 20.22 G 0.189 1 - - 41.59 - - $\rm0.00_{-0.00}^{+0.17}$ 41.59 3
405A 3 15 23.8 -55 17 59 5.65 10.96 13.14 S 0.000 1 - - - - - - -  
414A 3 15 06.4 -55 33 12 2.36 - - B 2.058 1 - - 44.49 - - - - 2
430A 3 13 38.1 -55 07 06 6.86 17.03 20.04 N 0.390 1 - - 42.21 - - $\rm0.14_{-0.14}^{+0.27}$ 42.34 3
430B 3 13 39.0 -55 07 14 7.64 18.52 20.66 N 0.391 0 - - - - - - - 3
432A 3 15 54.9 -55 08 05 4.20 19.19 - - - - - - - - -  
442A 3 13 41.4 -55 00 33 5.91 19.23 22.16 N 0.460 010 - - - - -  
442B 3 13 41.5 -55 00 37 4.60 18.31 22.01 - - - - - - -    
454A 3 16 23.8 -55 10 31 1.82 - - - - - - - - - -  
522A 3 16 13.1 -55 04 31 4.89 18.92 20.77 B 3.747 111 44.47 -25.83 1.94 - -  
529A 3 16 22.4 -55 12 18 1.83 19.03 - - - - - - - - -  
553A 3 15 18.8 -55 17 23 7.40 18.78 19.90 N 0.231 010 - - - - -  
564A 3 15 55.4 -55 15 04 7.40 - 23.37 N 0.633 011 - - - - -  
600A 3 15 03.9 -55 16 54 5.68 18.38 21.15 N 0.452 110 42.16 - - - -  
612A 3 16 06.9 -55 04 26 3.45 - 23.74 N 0.409 110 42.32 - - - -  
623A 3 16 42.5 -55 17 07 2.56 - 20.18 G 0.073 110 40.76 - - $\rm0.01_{-0.01}^{+0.11}$ 40.79  
677A 3 16 40.4 -55 19 29 7.85 - 21.93 N 0.131 010 - - - - -  
677B 3 16 41.5 -55 19 37 4.76 - - N 1.354 101 43.41 - - - -  

137A: Broad absorption line quasar.

315A and 315B: As counterpart candidates for X-ray source 315, an M star (315A) and a NELG (315B) are found. The hardness ratios of 315 indicated an obscured X-ray object. Therefore, we regarded 315B as the identification.


   
Table B.2: X-ray source list for marginal X-ray sources. The explanation of the individual columns is given in Appendix A.
(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID Name CR ML $\sigma _{\rm {X}}$ HR1 HR2 HR3 Flux
  XMMU J... [ks-1]   [arcsec]       [ $10^{-14}~ {\rm erg ~s^{-1}~ cm^{-2}}$]
137 031612.8-550846 1.8 $\pm$ 0.6 2.7 2.09 -0.003 $\pm$ 0.890 0.289 $\pm$ 0.683 -0.022 $\pm$ 0.636 0.285
160 031644.2-552242 1.4 $\pm$ 0.8 3.1 2.29 - - - 0.228
289 031648.0-551013 2.4 $\pm$ 0.8 4.1 2.10 1.000 $\pm$ 0.490 -1.000 $\pm$ 0.187 - 0.390
315 031346.2-550450 1.6 $\pm$ 0.6 2.6 2.31 - 0.589 $\pm$ 0.565 -1.000 $\pm$ 0.929 0.252
331 031636.5-550929 1.9 $\pm$ 0.7 3.6 2.08 1.000 $\pm$ 0.823 0.153 $\pm$ 0.745 -0.278 $\pm$ 0.757 0.313
341 031337.8-552144 4.8 $\pm$ 1.9 3.2 15.08 -1.000 $\pm$ 0.365 - - 0.767
366 031538.8-552001 1.5 $\pm$ 0.5 2.6 2.26 0.263 $\pm$ 0.894 0.146 $\pm$ 0.695 -0.198 $\pm$ 0.734 0.248
386 031339.5-550724 2.4 $\pm$ 0.7 2.5 2.51 - - -1.000 $\pm$ 0.373 0.382
405 031523.3-551756 0.9 $\pm$ 0.3 1.1 2.59 1.000 $\pm$ 0.774 0.271 $\pm$ 0.649 -0.887 $\pm$ 0.667 0.139
414 031506.5-553314 6.1 $\pm$ 2.3 2.6 2.49 - -1.000 $\pm$ 0.934 - 0.991
430 031339.0-550706 1.9 $\pm$ 0.6 4.8 1.97 0.738 $\pm$ 0.432 -0.946 $\pm$ 0.348 - 0.305
432 031555.1-550801 1.7 $\pm$ 0.5 3.2 2.08 1.000 $\pm$ 0.305 -0.043 $\pm$ 0.374 -1.000 $\pm$ 0.650 0.272
442 031341.0-550038 3.2 $\pm$ 1.0 2.4 2.51 0.557 $\pm$ 0.472 -0.278 $\pm$ 0.435 -1.000 $\pm$ 0.482 0.518
454 031623.7-551031 2.7 $\pm$ 0.8 3.3 2.72 0.364 $\pm$ 0.338 -0.689 $\pm$ 0.373 0.229 $\pm$ 0.859 0.429
522 031613.7-550430 1.4 $\pm$ 0.7 1.3 2.84 -0.176 $\pm$ 0.775 - - 0.223
529 031622.3-551217 2.1 $\pm$ 0.6 2.4 2.58 -0.479 $\pm$ 0.401 0.141 $\pm$ 0.586 -0.340 $\pm$ 0.703 0.334
553 031518.0-551722 1.4 $\pm$ 0.4 1.4 2.44 0.953 $\pm$ 0.276 -0.020 $\pm$ 0.336 -0.319 $\pm$ 0.411 0.224
564 031554.9-551459 1.4 $\pm$ 0.4 2.3 2.37 1.000 $\pm$ 0.391 -0.193 $\pm$ 0.363 -1.000 $\pm$ 0.580 0.230
581 031638.3-551901 1.7 $\pm$ 0.7 4.2 2.44 - - 1.000 $\pm$ 0.534 0.266
600 031503.3-551656 1.2 $\pm$ 0.4 3.1 2.49 -0.347 $\pm$ 0.390 -1.000 $\pm$ 0.511 - 0.191
612 031606.8-550423 2.2 $\pm$ 0.6 4.2 2.33 -0.340 $\pm$ 0.777 0.352 $\pm$ 0.781 -0.676 $\pm$ 0.809 0.347
623 031642.3-551707 2.7 $\pm$ 0.8 4.1 2.56 1.000 $\pm$ 0.277 -0.407 $\pm$ 0.505 - 0.433
677 031641.2-551934 1.5 $\pm$ 0.7 3.6 3.35 - 1.000 $\pm$ 0.710 - 0.234

  
Appendix C: Optical and X-ray images and spectra of X-ray classifications

C.1 Optical images

The optical images show a $30''\times30''$ section that is centred on the X-ray position (except for images next to the edge of the CCD). The cut levels are set differently for each image. The black circle shows an 1$\sigma$-X-ray position error including a 2'' systematic error. Black horizontal markers represent the position of the spectroscopically classified object. The nominal orientation of the images is North facing upwards and east to the left (exceptions are marked).
Images were generated using VLT FORS pre-images, WFI-R-band images, or DSSII-images, in this order of availability. The astrometric correction of VLT FORS pre-images was performed as a 2-stage process, since USNO-stars or stars from similarly well-calibrated cataloges were found to be too sparse or were saturated. We therefore first generated a stellar catalogue of WFI objects (calibrated with the USNO) using this as input catalogue for astrometric calibration of the VLT images. We typically used stars of the order of 10 that were equally distributed over the field of view and reached an rms accurracy of $\sim$0.2'' (0.7 pixels).

C.2 X-ray images

The X-ray images show a $\sim$ $32''\times32''$ section which is nearly centred on the X-ray position. The cut levels are set differently for every image. The black circle shows an 1$\sigma$-X-ray position error (2'' systematic error). Black horizontal markers represent the position of the spectroscopically classsified object. The nominal orientation of the X-ray images is North facing upwards and East to the left.

C.3 Labelling of spectra

All spectra are in flux units of 10-18 erg cm-2 s-1 $\AA^{-1}$. The black solid line represents the spectrum, the green solid line the error spectrum. Red markers indicate emission lines, blue markers absorption lines. There are exeptions in a few spectra. If no optical spectrum is shown the redshift and classification is taken from the literature.

C.4 Comment

Below every row of opticaland X-ray images and optical spectrum a comment for the shown objects is given. This comment states the classification number of the possible counterpart object and the corresponding redshift. If the redshift is only determined by one identification feature in the optical spectra, an additional comment ":@<identification feature>'' is shown. The colon marks the uncertainty of the redshift (these objects have a redshift flag of "0'' in Table 8 (full paper) and Table B.1).


\begin{figure}\par\includegraphics[width=9cm,clip]{11.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{12.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{13.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{14.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{15.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{16.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{17.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{18.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{19.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{20.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{21.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{22.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{23.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{24.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{25.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{26.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{27.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{28.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{29.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{30.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{31.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{31.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{33.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{34.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{35.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{36.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{37.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{38.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{39.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{40.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{41.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{42.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{43.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{44.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{45.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{46.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{47.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{48.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{49.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{50.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{51.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{52.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{53.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{54.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{55.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{56.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{57.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{58.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{59.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{60.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{61.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{62.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{63.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{64.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{65.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{66.eps}\end{figure}

  
Appendix D: Optical table of additional objects

(1) No
Continuously arbitrary identification number of additional spectroscopically classified sources in the Marano Field. These sources are labelled with the suffix "MA''.

(2) RA [hh:min:s] and (3) Dec [degmin:s]
Right ascension and declination of the spectroscopically classified object.

(4) z
Spectroscopic redshift of the classified object.

(5) K
SOFI K-band magnitude of the spectroscopically classified object, whenever possible.

(6) R
WFI R-band magnitude of the spectroscopically classified object, whenever possible.

(7) Class
Classification of the optical identified object. S - star, G - normal galaxy (no emission lines), and N - narrow emission line galaxy (unresolved emission lines).


   
Table D.1: Optical data of additional objects.
(1) (2) (3) (4) (5) (6) (7)
No RA Dec z K R Class
1MA 3 16 08.4 -55 23 06 0.486 17.51 20.41 N
2MA 3 16 19.0 -55 17 34 1.027 18.77 22.52 G
3MA 3 16 21.8 -55 17 42 0.000 - 22.64 S
4MA 3 16 26.8 -55 18 30 1.199 20.23 22.12 N
5MA 3 16 35.0 -55 18 40 1.374 - 23.89 N
6MA 3 16 39.6 -55 18 50 0.491 19.02 21.84 N
7MA 3 16 26.1 -55 08 14 0.158 19.52 20.14 N
8MA 3 16 33.8 -55 12 50 0.486 20.08 22.01 N
9MA 3 16 07.9 -55 05 07 0.786 18.70 21.36 N
10MA 3 16 27.2 -55 04 23 0.235 18.56 18.47 N
11MA 3 16 16.2 -55 02 38 0.420 - 21.28 N
12MA 3 16 23.8 -55 08 56 0.000 17.57 22.10 S
14MA 3 16 26.5 -55 07 35 1.070 18.83 21.94 N
15MA 3 16 24.6 -55 07 25 0.972 17.99 21.02 N
16MA 3 13 31.0 -55 13 56 0.000 - 21.87 S
17MA 3 13 36.7 -55 14 46 0.579 18.09 21.96 B
18MA 3 13 42.3 -55 14 31 0.583 17.61 21.24 N
19MA 3 13 44.3 -55 14 34 0.583 17.68 21.30 N
20MA 3 13 48.8 -55 14 10 0.000 18.95 20.07 S
21MA 3 13 50.4 -55 13 20 0.552 18.26 22.40 N
22MA 3 13 52.8 -55 13 37 0.000 19.82 22.29 S
23MA 3 13 06.8 -55 13 04 0.254 - 20.09 G
24MA 3 13 11.4 -55 11 39 0.000 - 23.10 S
25MA 3 13 18.2 -55 13 04 0.865 - - N
26MA 3 13 19.0 -55 11 37 0.000 - 20.81 S
27MA 3 13 24.5 -55 03 11 0.000 18.19 22.54 S
28MA 3 13 28.3 -55 01 38 0.800 19.46 22.14 N
30MA 3 15 14.6 -55 10 33 0.000 - 22.79 S
31MA 3 15 45.7 -55 12 49 0.628 17.12 21.31 G
32MA 3 15 43.7 -55 08 57 0.771 19.42 23.17 G
33MA 3 14 14.4 -55 19 38 0.000 - 23.08 S
34MA 3 14 15.2 -55 21 43 0.813 18.16 22.62 N
35MA 3 14 11.5 -55 21 18 0.869 18.36 22.43 N
36MA 3 14 08.5 -55 20 24 0.000 18.77 22.64 S
37MA 3 13 11.5 -55 21 13 0.907 - 22.25 N
38MA 3 13 14.2 -55 26 32 0.554 - 21.98 N
39MA 3 13 00.8 -55 25 56 0.818 - 21.03 N
40MA 3 13 01.8 -55 25 45 0.816 - 20.85 N
41MA 3 13 05.5 -55 25 28 0.552 - 21.11 N
42MA 3 13 30.3 -55 24 42 0.613 - 22.89 N
43MA 3 13 31.1 -55 24 29 0.000 - - S
44MA 3 13 33.3 -55 24 15 0.526 - 21.51 N
45MA 3 14 41.4 -55 04 34 0.704 - 22.15 N
46MA 3 14 48.1 -55 03 04 0.702 16.86 20.67 N
47MA 3 14 52.7 -55 05 49 0.460 16.40 19.32 G
48MA 3 14 52.8 -55 24 39 0.228 - 18.27 G
49MA 3 14 49.0 -55 24 24 0.159 - 17.43 G
50MA 3 15 24.2 -55 14 04 0.774 - 22.16 N
51MA 3 15 32.4 -55 14 19 0.700 - 20.32 N
52MA 3 15 40.1 -55 12 34 0.631 19.22 21.66 N
53MA 3 15 44.6 -55 14 18 0.275 18.94 21.27 N
54MA 3 15 46.3 -55 13 55 0.815 19.17 22.89 N
55MA 3 15 48.6 -55 13 57 0.475 19.91 22.48 N
56MA 3 15 14.0 -55 17 10 0.813 - 20.99 N
57MA 3 15 16.9 -55 17 07 0.000 - 22.09 S
58MA 3 15 20.7 -55 14 17 0.500 - 19.87 N
59MA 3 15 21.8 -55 14 11 0.495 - 22.97 G
60MA 3 15 16.9 -55 06 13 0.840 18.38 21.81 N
61MA 3 16 08.3 -55 23 17 0.071 15.23 17.50 N
62MA 3 15 03.4 -55 16 37 0.000 15.55 17.35 S

Appendix E: Optical charts and spectra of additional optical classifications

For explanation see Appendix C. The only difference is the centring to the optical position, since no X-ray detection is quantified.


\begin{figure}\par\includegraphics[width=12.5cm,clip]{68.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{69.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{70.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{71.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{72.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{73.eps}\end{figure}

\begin{figure}\par\includegraphics[width=16.5cm,clip]{74.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{75.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{76.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{77.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{78.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{79.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{80.eps}\end{figure}


\begin{figure}\par\includegraphics[width=16.5cm,clip]{81.eps}\end{figure}


\begin{figure}\par\includegraphics[width=13cm,clip]{82.eps}\end{figure}

\begin{figure}\par\includegraphics[width=13cm,clip]{83.eps}\end{figure}



Copyright ESO 2007