Table 5: Flux points including relevant event statistics are listed for the spectrum of the combined HESS data set, shown in Fig. 4. For all 28 bins, the energy, the number of signal and background counts (ON and OFF), the normalisation factor $\alpha $, the statistical significance $\sigma $, the gamma-ray flux and the energy range of the bin are given. The significance is calculated following Li & Ma (1983). For the final bin, as it has only marginally positive significance, we list both the actual flux point and the $2\sigma $ upper limit (which is drawn in Fig. 4). Note that the energy and flux values given here are corrected for the variation of optical efficiency, as discussed in the main text.

#
E    (TeV) ON OFF $\alpha $ $\sigma $ Flux    $({\rm cm}^{-2}~
{\rm s}^{-1})$ Range (TeV)

1
0.33 5890 5134 1.00 7.2 $(2.73 \pm 0.38) ~~ \times ~~ 10^{-10}$ 0.30-0.37
2 0.40 5583 4797 1.00 7.7 $(1.48 \pm 0.19) ~~ \times ~~ 10^{-10}$ 0.37-0.44
3 0.49 4878 4010 0.97 10.5 $(1.13 \pm 0.11) ~~ \times ~~ 10^{-10}$ 0.44-0.54
4 0.59 4202 3409 0.94 11.6 $(7.22 \pm 0.63) ~~ \times ~~ 10^{-11}$ 0.54-0.65
5 0.71 3900 2941 0.94 14.2 $(5.20 \pm 0.37) ~~ \times ~~ 10^{-11}$ 0.65-0.79
6 0.86 3682 2833 0.97 11.9 $(2.56 \pm 0.22) ~~ \times ~~ 10^{-11}$ 0.79-0.95
7 1.04 3881 2643 0.98 16.1 $(2.17 \pm 0.14) ~~ \times ~~ 10^{-11}$ 0.95-1.15
8 1.26 3982 2758 0.97 16.0 $(1.40 \pm 0.09) ~~ \times ~~ 10^{-11}$ 1.15-1.39
9 1.53 4076 2661 0.98 17.9 $(1.06 \pm 0.06) ~~ \times ~~ 10^{-11}$ 1.39-1.69
10 1.85 3873 2603 0.97 17.0 $(6.71 \pm 0.40) ~~ \times ~~ 10^{-12}$ 1.69-2.04
11 2.24 3452 2251 0.98 16.8 $(4.50 \pm 0.27) ~~ \times ~~ 10^{-12}$ 2.04-2.47
12 2.71 3215 2113 0.98 15.9 $(2.97 \pm 0.19) ~~ \times ~~ 10^{-12}$ 2.47-2.99
13 3.28 3075 2081 0.98 14.6 $(1.95 \pm 0.13) ~~ \times ~~ 10^{-12}$ 2.99-3.63
14 3.98 2915 2057 0.98 12.9 $(1.24 \pm 0.10) ~~ \times ~~ 10^{-12}$ 3.63-4.39
15 4.81 2537 1721 0.98 13.1 $(8.91 \pm 0.68) ~~ \times ~~ 10^{-13}$ 4.39-5.31
16 5.82 2183 1555 0.98 10.8 $(5.18 \pm 0.48) ~~ \times ~~ 10^{-13}$ 5.31-6.43
17 7.05 1961 1525 0.98 7.9 $(2.77 \pm 0.35) ~~ \times ~~ 10^{-13}$ 6.43-7.79
18 8.53 1507 1208 0.98 6.2 $(1.49 \pm 0.24) ~~ \times ~~ 10^{-13}$ 7.79-9.43
19 10.33 1211 881 0.98 7.6 $(1.27 \pm 0.17) ~~ \times ~~ 10^{-13}$ 9.43-11.41
20 12.51 881 664 0.99 5.8 $(6.69 \pm 1.15) ~~ \times ~~ 10^{-14}$ 11.41-13.81
21 15.14 652 551 0.99 3.2 $(2.58 \pm 0.82) ~~ \times ~~ 10^{-14}$ 13.81-16.72
22 18.32 473 364 0.99 4.0 $(2.19 \pm 0.55) ~~ \times ~~ 10^{-14}$ 16.72-20.24
23 22.18 327 260 0.99 2.9 $(1.10 \pm 0.38) ~~ \times ~~ 10^{-14}$ 20.24-24.50
24 26.85 220 153 0.99 3.6 $(8.82 \pm 2.46) ~~ \times ~~ 10^{-15}$ 24.50-29.66
25 32.50 182 110 0.99 4.3 $(7.70 \pm 1.79) ~~ \times ~~ 10^{-15}$ 29.66-35.91
26 47.19 227 180 0.99 2.5 $(1.15 \pm 0.47) ~~ \times ~~ 10^{-15}$ 35.91-63.71
27 81.26 51 37 0.99 1.5 $(2.36 \pm 1.55) ~~ \times ~~ 10^{-16}$ 63.71-113.02
          0.6 $\left(3.77^{+6.39}_{-3.77}\right) ~~ \times ~~ 10^{-17}$  
28 169.79 14 11 1.00 Upper Limit $1.6 \times 10^{-16}$ 113.02 - 293.82


Source LaTeX | All tables | In the text