Table 1: The shifts of the aberration patterns for the one-mirror optical system rotating at $\Omega =60 \hbox {$^{\prime \prime }$ }/{\rm s}$ after subtracting the mean value $\delta \overline{a}^{~\rm d}_{\rm L}+\delta
\overline{a}^{~\rm r}_{\rm L}=18.3834$ $\mu $as.
  $\delta a_{\rm L}\ \times 10^{-3} ~\hbox{$\mu$ as}$ $\delta a_{\rm C}\ \times 10^{-3} ~\hbox{$\mu$ as}$
$_{\displaystyle{a_{\rm C}}}$ $\backslash$ $^{\displaystyle{a_{\rm L}}}$ $-30\hbox{$^\prime$ }$ $0\hbox{$^\prime$ }$ $+30\hbox{$^\prime$ }$ $-30\hbox{$^\prime$ }$ $0\hbox{$^\prime$ }$ $+30\hbox{$^\prime$ }$
$-30\hbox{$^\prime$ }$ 0.9 -1.2 0.9 1.4 0.0 -1.4
$0\hbox{$^\prime$ }$ 0.2 -1.9 0.2 0.0 0.0 0.0
$30 \hbox{$^\prime$ }$ 0.9 -1.2 0.9 -1.4 0.0 1.4


Source LaTeX | All tables | In the text