Table 3: Definition of the signals used in the BL/PC variability test.
Type Time dependence
AM $A(t) = A\sin~(\Omega t + \Phi)$; $\omega(t)$, $\varphi(t)=$ const.
PM $\varphi(t) = A_{\varphi}\sin~(\Omega t + \Psi)$; $\omega(t)$, A(t)= const.
FM $\omega(t) = \omega_0+A_{\omega}\sin~(\Omega t + \Gamma)$; A(t), $\varphi(t)=$ const.
PC $\omega(t) = \omega_0/(1+\beta t/P_0)$; A(t), $\varphi(t)=$ const.
Note: signal form: $x(t)=(1+A(t))\sin~(\omega(t)t+\varphi(t))$; $\omega_0=2\pi/P_0$; P0=0.377; $\Omega=2\pi/P_{\rm BL}$; $P_{\rm BL} =$ BL period; AM = amplitude modulation; PM = phase modulation; FM = frequency modulation; PC = secular frequency change; and $\Phi$, $\Psi$, and $\Gamma$ are arbitrary constant phases.

Source LaTeX | All tables | In the text