Table 2: Distribution width of different quantities, according to a Gaussian fit.
Distribution $\sigma$
$\log L(\nu_{R})$ @ 12 h rest frame 0.28a
$\log L_{\rm X}$ [4-20 keV], @12 h rest frame 0.74b
$\log F(\nu_{R})$ @ 12 h obs frame 0.48
$\log L(\nu_{R})$ @ 12 h rest frame, no $A_{V}^{\rm host}$ 0.39a,c
$\log E_{\rm\gamma, iso}$ 0.80
$\log [\nu_{R}F(\nu_{R})t_{12~{\rm h}}$/Fluence $_{\gamma, {\rm iso}}]$ 0.93
$\log [\nu_{R}L(\nu_{R})t_{12~{\rm h}}/E_{\rm\gamma, iso}]$ 0.9
a Considering all bursts but the 3 underluminous ones; b formal result from the fit, but the fit is poor; c optical luminosities dereddened only for Galactic absorption; no host galaxy extinction has been considered.

Source LaTeX | All tables | In the text