Table D.2: Some characteristic model quantities (name of model given in Col. 1) at time t (in msec; Col. 2) when the core has reached a quasi-equilibrium state. For models which do not reach a quasi-equilibrium state until the end of the simulation (e.g. type-II models with large scale core pulsations) we provide upper (top value) and lower (bottom value) bounds estimated from the values at maximum and minimum contraction. Columns 3 and 4 give the surface radius  $r_{{\rm c}}$ (in km) and the mass  $M_{{\rm c}}$ (in solar masses) of the quasi-equilibrium configuration, respectively. Since it is still surrounded by an (expanding) envelope of high density matter, the definition of its surface radius  $r_{{\rm c}}$ is somewhat uncertain. As the rotation rate  $2\pi /\Omega $ (in ms), where $\Omega $ is the angular velocity averaged over the angle $\theta $, as well as the total magnetic field $\vert\vec b\vert$ and (the absolute value of) its toroidal component  $b_{{\rm\phi }}$ (both in Gauss) vary strongly near the surface and on short time scales, the corresponding values in Cols. 5-7 should be used with care. Negative values of the rotation rate signify counter-rotating cores. Finally, in Cols. 8 and 9 we give the radii of the shock at the polar axis, $r_{{\rm sh}}^{{\rm p}}$, and at the equator, $r_{{\rm sh}}^{{\rm e}}$ (both in cm), respectively. No entry in these columns implies that the shock has already left the computational grid.
Model t $r_{{\rm c}}$ $M_{{\rm c}}$ $2\pi /\Omega $ $\vert\vec b\vert$ $\vert b_{\phi}\vert$ $r_{{\rm sh}}^{{\rm p}}$ $r_{{\rm sh}}^{{\rm e}}$
  $[{\rm ms}]$ $[{\rm km}]$ $[{M_{\odot}]}$ $[{\rm ms}]$ $[{\rm G}]$ $[{\rm G}]$ $[{\rm km}]$ $[{\rm km}]$
A1B1G3-D3M10 75 22.5 0.59 9.6 $4.9\times 10^{13}$ $4.7\times 10^{13}$ 725 692
A1B1G3-D3M11 75 22.3 0.59 8.2 $5.7\times 10^{14}$ $5.6\times 10^{13}$ 725 692
A1B1G3-D3M12 75 21.5 0.59 11.9 $8.7\times 10^{14}$ $4.8\times 10^{14}$ 725 692
A1B1G3-D3M13 75 23.4 0.61 -104.9 $8.5\times 10^{14}$ $4.6\times 10^{13}$ 768 669
A1B3G1-D3M10 116 49.8 1.2 8.0 $1.9\times 10^{12}$ $1.9\times 10^{12}$ 920 745
  126 129 1.2 52.4 $3.6\times 10^{11}$ $3.6\times 10^{11}$    
A1B3G1-D3M11 116 49.7 1.2 8.0 $1.9\times 10^{13}$ $1.9\times 10^{13}$ 920 745
  126 129 1.2 46.7 $3.2\times 10^{12}$ $3.2\times 10^{12}$    
A1B3G1-D3M12 116 49.0 1.2 7.9 $2.0\times 10^{14}$ $1.9\times 10^{14}$ 920 745
  125 129 1.2 45.5 $3.2\times 10^{13}$ $3.2\times 10^{13}$    
A1B3G1-D3M13 117 35.3 1.1 6.3 $1.4\times 10^{15}$ $4.7\times 10^{14}$ 813 568
A1B3G3-D3M10 70 25.5 0.68 6.6 $5.4\times 10^{13}$ $5.4\times 10^{13}$ 617 544
A1B3G3-D3M11 58.5 29.1 0.68 8.3 $2.2\times 10^{14}$ $2.2\times 10^{14}$ 330 2.77
A1B3G3-D3M12 70 23.6 0.70 4.6 $1.4\times 10^{15}$ $1.2\times 10^{15}$ 625 557
A1B3G3-D3M13 70 27.1 0.73 140.7 $9.9\times 10^{14}$ $1.2\times 10^{14}$ 1068 568
A1B3G5-D3M10 48 13.6 0.21 4.9 $4.4\times 10^{13}$ $4.4\times 10^{13}$ 282 278
A1B3G5-D3M11 48 13.6 0.21 4.8 $4.9\times 10^{14}$ $4.9\times 10^{14}$ 282 278
A1B3G5-D3M12 48 14.2 0.22 4.9 $8.8\times 10^{14}$ $7.2\times 10^{14}$ 282 278
A1B3G5-D3M13 48 13.6 0.24 -215 $1.9\times 10^{15}$ $4.8\times 10^{13}$ 285 278
A2B4G1-D3M10 114 119 0.86 58.1 $3.9\times 10^{11}$ $3.9\times 10^{11}$ 518 438
  151 110 1.24 29.4 $3.6\times 10^{11}$ $3.6\times 10^{11}$    
  179 118 0.91 57.0 $6.9\times 10^{11}$ $6.9\times 10^{11}$    
A2B4G1-D3M11 115 119 0.85 58.0 $4.0\times 10^{12}$ $3.9\times 10^{12}$ 518 438
  151 111 1.24 29.4 $3.6\times 10^{12}$ $3.6\times 10^{12}$    
A2B4G1-D3M12 124 120 0.76 72.2 $2.6\times 10^{13}$ $2.1\times 10^{13}$ 881 634
A2B4G1-D3M13 123 120 1.1 40.3 $1.5\times 10^{14}$ $1.1\times 10^{14}$ 570 506
  143 57.4 1.1 8.3 $5.4\times 10^{14}$ $3.3\times 10^{14}$    
  146 60.6 1.1 8.2 $5.8\times 10^{14}$ $3.1\times 10^{14}$    
A2B4G4-D3M10 48 28 0.47 6.4 $8.8\times 10^{12}$ $8.6\times 10^{12}$ 246 186
  60 29.5 0.48 7.1 $1.1\times 10^{13}$ $1.1\times 10^{13}$ 482 370
A2B4G4-D3M11 48 28 0.47 6.4 $8.7\times 10^{13}$ $8.6\times 10^{13}$ 246 184
  60 29.4 0.48 7.0 $9.3\times 10^{13}$ $9.0\times 10^{13}$ 482 370
A2B4G4-D3M12 48 28.3 0.47 6.0 $8.0\times 10^{14}$ $7.8\times 10^{14}$ 266 201
A2B4G4-D3M13 48 17.6 0.48 10.6 $1.9\times 10^{15}$ $4.5\times 10^{14}$ 332 249
A2B4G5-D3M10 50 13.9 0.21 3.1 $2.7\times 10^{13}$ $2.7\times 10^{13}$ 308 290
A2B4G5-D3M11 50 13.9 0.22 3.1 $3.4\times 10^{14}$ $3.4\times 10^{14}$ 308 290
A2B4G5-D3M12 50 12.0 0.23 3.2 $3.2\times 10^{15}$ $2.9\times 10^{15}$ 316 293
A2B4G5-D3M13 50 15.2 0.28 -70.7 $2.4\times 10^{15}$ $1.1\times 10^{14}$ 891 320
A3B2G4-D3M10 57 19.6 0.44 4.6 $4.7\times 10^{13}$ $4.7\times 10^{13}$ 378 340
A3B2G4-D3M11 57 20.0 0.44 4.8 $4.0\times 10^{14}$ $4.0\times 10^{14}$ 382 340
A3B2G4-D3M12 57 28.2 0.44 8.7 $8.7\times 10^{14}$ $8.4\times 10^{14}$ 382 348
A3B2G4-D3M13 57 17.1 0.45 41.2 $2.4\times 10^{15}$ $2.1\times 10^{14}$ 906 405
A3B3G3-D3M10 64.7 54.9 0.73 20.3 $2.0\times 10^{13}$ $1.9\times 10^{13}$ 491 398
  67.8 37.4 0.71 10.0 $1.1\times 10^{13}$ $1.1\times 10^{13}$ 564 463
A3B3G3-D3M11 64.7 54.9 0.73 20.3 $2.0\times 10^{13}$ $1.9\times 10^{13}$ 485 398
  67.7 37.5 0.71 9.9 $1.2\times 10^{14}$ $1.2\times 10^{14}$ 558 458
A3B3G3-D3M12 68 39.7 0.65 6.2 $7.0\times 10^{14}$ $6.9\times 10^{14}$ 564 469
A3B3G3-D0M13 64.2 63.1 0.68 12.8 $4.2\times 10^{14}$ $2.5\times 10^{14}$ 911.5 508.4
A3B3G3-D1M13 68 39.7 0.71 14.8 $4.9\times 10^{13}$ $4.8\times 10^{13}$ 571 469
A3B3G3-D3M13 68 24.7 0.63 11.1 $1.1\times 10^{15}$ $3.4\times 10^{14}$ 901 571
A3B3G4-D3M10 61.7 25.2 0.47 6.3 $2.7\times 10^{13}$ $2.7\times 10^{13}$ 497 412
A3B3G4-D3M11 62 24.4 0.46 5.7 $4.3\times 10^{14}$ $4.3\times 10^{14}$ 503 417
A3B3G4-D3M12 62 35.9 0.44 5.5 $9.4\times 10^{14}$ $7.0\times 10^{14}$ 520 417
A3B3G4-D3M13 43 27.72 0.48 34.2 $2.3\times 10^{14}$ $1.4\times 10^{14}$ 131 111
A3B3G5-D3M10 44.3 13.4 0.22 3.3 $2.8\times 10^{13}$ $2.7\times 10^{13}$ 224 221
A3B3G5-D3M11 44.3 13.7 0.22 3.6 $3.3\times 10^{14}$ $3.3\times 10^{14}$ 226 224
A3B3G5-D0M12 52.7 29.2 0.23 7.7 $5.3\times 10^{14}$ $5.2\times 10^{14}$ 375 358
A3B3G5-D1M12 54.6 16.4 0.24 5.6 $1.3\times 10^{14}$ $1.3\times 10^{14}$ 371 371
A3B3G5-D2M12 54.6 13.7 0.25 3.4 $2.0\times 10^{15}$ $1.9\times 10^{15}$ 384 388
A3B3G5-D3M12 56.9 12.6 0.24 2.3 $3.1\times 10^{15}$ $2.8\times 10^{15}$ 417 417
A3B3G5-D4M12 57.6 14.8 0.24 3.4 $5.3\times 10^{14}$ $5.2\times 10^{14}$ 375 358
A3B3G5-D3M13 59.6 15.1 0.27 -38.0 $2.3\times 10^{15}$ $8.9\times 10^{13}$ 1009 354
A4B5G5-D3M10 52.7 86.0 0.74 21.6 $2.3\times 10^{12}$ $1.2\times 10^{12}$    
A4B5G5-D3M11 52.7 71.3 0.68 17.1 $2.3\times 10^{13}$ $2.22\times 10^{13}$    
A4B5G5-D3M12 36.1 74.4 0.70 10.9 $1.4\times 10^{14}$ $1.0\times 10^{14}$    
A4B5G5-D3M13 46.8 13.9 0.36 34.8 $3.4\times 10^{15}$ $2.0\times 10^{14}$    


Source LaTeX | All tables | In the text