Table 1: Main parameters of the EOSs with mixed-phase segment. Below the mixed-phase transition point n1 a polytropic EOS with $\Gamma _{\rm A}$ is used. Mixed phase extends within $n_1 < n_{\rm b} < n_2$, and is described by a polytrope with adiabatic index $\Gamma _{\rm m}$. Above the density n2 we assume pure quark matter with MIT bag model EOS $p={1\over 3}(\rho -\rho _0)c^2$. In all cases the dimensionless polytropic pressure coefficient Kwas equal 0.025 (see Appendix A for details). $M_{\rm b,max}^{\rm stat}$ and $M^{\rm stat}_{\rm max}$ denote the maximum allowable baryon and gravitational mass of the non-rotating star. The EOSs are labeled as follows: MSt produces a stable back bending, MUn - an unstable one, and MM produces a marginally stable case (for more details see the text).
EOS $\Gamma _{\rm A}$ n1 $\Gamma _{\rm m}$ n2 $M_{\rm b,~max}^{\rm stat}~(M^{\rm stat}_{\rm max})$
    $[{\rm fm^{-3}}]$   $[{\rm fm^{-3}}]$ $[M_\odot]$

MSt

2 0.35 1.5 0.8 1.508 (1.393)
MUn 2.5 0.2 1.3 0.65 1.586 (1.453)
MM 2.25 0.25 1.25 0.57 1.685 (1.534)


Source LaTeX | All tables | In the text