Table 2: Swift XRT temporal decay fits. Quoted errors are 90% confidence on 1 interesting parameter.
  GRB050126 GRB050219a
Parameter Model 1: Powerlaw ( $f(t)\propto t^{-\alpha}$)


$\alpha $

$\rm 2.52^{+7.5}_{-0.3}$ $\rm 2.50^{+0.16}_{-0.16}$
$\chi^{2}/\nu$ - 225.1/38
Cash $statistic/ndp^{\dagger}$ 62.0/20 -
  Model 2: Broken powerlaw


$\alpha_{1}$

$\rm 2.52^{+0.50}_{-0.22}$ $\rm 3.17^{+0.24}_{-0.16}$
$T_{\rm break}$ $\rm 424^{+561}_{-120}$ $\rm 332.1^{+25.8}_{-21.6}$
$\alpha_{2}$ $\rm 1.00^{+0.17}_{-0.26}$ $\rm0.75^{+0.09}_{-0.07}$
$\chi^{2}/\nu$ - 74.6/36
Cash statistic/ndp 26.1/20 -
  Model 3: Offset powerlaw $f(t)\propto (t-t_{\rm a})^{-\alpha}$


$\alpha $

$\rm 1.08^{+0.09}_{-0.09}$ $\rm 1.10^{+0.09}_{-0.08}$
$t_{\rm a}$ $\rm 105.1^{+9.1}_{-11.3}$ $\rm 100.7^{+2.8}_{-4.0}$
$\chi^{2}/\nu$ - 114.1/37
Cash statistic/ndp 31.7/20 -
  Model 4: Gaussian + powerlaw


$t_{\rm g}$ (fixed)

0.0 0.0
$\sigma$ $\rm 89.1^{+17.8}_{-16.1}$ $\rm 77.9^{+6.2}_{-6.0}$
$\alpha $ $\rm 1.11^{+0.12}_{-0.11}$ $\rm0.81^{+0.09}_{-0.07}$
$\chi^{2}/\nu$ - 89.4/36
Cash statistic/ndp 26.4/20 -

$\textstyle \parbox{9cm}{
\noindent $\dagger$\space Ndp number of data points.}$


Source LaTeX | All tables | In the text