Table 6: Branching fractions (BF), transition probabilities (gA, in 106 s-1) and oscillator strengths (log gf) for transitions depopulating the odd-parity levels of Os II.
Upper levela J Lower levela J $\lambda$(nm)b Experimentc   This work
Energy (cm-1)   Energy (cm-1)     BF gA   BFd gAe log gfe CFh
39 389.49 7/2 0.00 9/2 253.7986 0.914 107.5    0.307 37.2 -1.44 -0.030
$\tau$ = 66(6)f ns   3593.15 7/2 279.2758       0.012 1.4 -2.79 0.004
    3928.94 5/2 281.9205 0.003 0.4   0.025 3.0 -2.45 -0.015
    7891.93 5/2 317.3931 0.006 0.7   0.275 33.3 -1.30 0.128
    11 654.08 5/2 360.4471       0.198 24.0 -1.33 0.185
    13 203.88 7/2 381.7808       0.002 0.2 -3.36 -0.024
    13 414.80 5/2 384.8810 0.024 2.8   0.171 20.7 -1.34 -0.127
41 282.95 9/2 0.00 9/2 242.1572       0.855 70.1 -1.21 -0.211
[$\tau$ = 122 ns]   3593.15 7/2 265.2448       0.004 0.3 -3.50 -0.003
    11 459.90 7/2 335.2148       0.057 4.7 -2.10 0.114
    13 203.88 7/2 356.0355       0.044 3.6 -2.16 -0.179
    17 242.26 7/2 415.8442       0.010 0.8 -2.68 0.084
43 802.36 7/2 0.00 9/2 228.2278 0.687 930.9   0.760 1147.2 -0.05 0.331
$\tau$ = 5.3(4)f ns   3593.15 7/2 248.6242 0.230 311.5   0.155 226.4 -0.68 0.097
    3928.94 5/2 250.7181 0.015 20.4   0.016 24.1 -1.64 -0.020
    7891.93 5/2 278.3885 0.026 35.1   0.010 15.1 -1.76 -0.018
    11 459.90 7/2 309.1013       0.004 6.3 -2.04 -0.007
    11 654.08 5/2 310.9684       0.014 21.1 -1.51 -0.103
    13 203.88 7/2 326.7194       0.027 40.7 -1.19 0.120
    13 414.80 5/2 328.9873       0.008 12.1 -1.71 0.033
    15 605.58 9/2 354.5491       0.001 1.5 -2.55 0.005
    17 242.26 7/2 376.3976       0.001 1.5 -2.50 -0.017
    21 590.81 9/2 450.0899       0.001 1.5 -2.34 -0.012
44 315.40 9/2 0.00 9/2 225.5853       0.882 1729.4 0.12 0.454
$\tau$ = 5.1(4)f ns   3593.15 7/2 245.4917       0.011 21.6 -1.71 0.012
    11 459.90 7/2 304.2745       0.038 74.5 -0.98 -0.118
    13 203.88 7/2 321.3315       0.031 60.8 -1.03 0.199
    17 242.26 7/2 369.2647       0.007 13.7 -1.55 -0.096
    17 688.64 11/2 375.4553       0.001 2.0 -2.37 -0.075
46 157.19 3/2 3928.94 5/2 236.7360 0.863 616.6   0.880 628.5 -0.28 0.337
$\tau$ = 5.6(5)g ns   5592.05 3/2 246.4425       0.014 10.0 -2.04 0.014
    6636.57 1/2 252.9564 0.031 22.4   0.029 20.7 -1.70 -0.021
    7891.93 5/2 261.2556 0.028 19.8   0.008 5.7 -2.23 0.006
    13 136.61 3/2 302.7533       0.008 5.7 -2.11 -0.016
    13 414.80 5/2 305.3257       0.001 0.7 -3.01 0.001
    17 424.39 3/2 347.9347       0.018 12.8 -1.63 0.093
    17 569.40 5/2 349.6996       0.026 18.6 -1.47 -0.072
46 373.51 5/2 3593.15 7/2 233.6805 0.773 828.5   0.772 772.0 -0.20 0.342
$\tau$ = 6.0(6)f ns   3928.94 5/2 235.5293 0.113 121.5   0.080 80.0 -1.18 0.052
    5592.05 3/2 245.1352 0.038 41.0   0.057 57.0 -1.29 -0.041
    7891.93 5/2 259.7869       0.012 12.0 -1.91 0.014
    11 459.90 7/2 286.3372       0.013 13.0 -1.80 0.025
    11 654.08 5/2 287.9387       0.006 6.0 -2.13 -0.024
    13 136.61 3/2 300.7828       0.001 1.0 -2.87 0.003
    13 203.88 7/2 301.3928       0.007 7.0 -2.02 -0.035
    13 414.80 5/2 303.3216       0.037 37.0 -1.29 0.084
    17 242.26 7/2 343.1756       0.001 1.0 -2.75 0.018
    17 569.40 5/2 347.0733       0.008 8.0 -1.84 0.043
48 128.08 1/2 5592.05 3/2 235.0229 0.708 240.2   0.768 260.3 -0.67 0.320
$\tau$ = 5.9(5)g ns   6636.57 1/2 240.9399 0.083 28.1   0.099 33.5 -1.54 -0.118
    13 136.61 3/2 285.7000       0.027 9.1 -1.95 -0.040
    17 424.39 3/2 325.5998       0.005 1.7 -2.57 -0.021
48 798.70 5/2 3928.94 5/2 222.7980 0.606 542.7   0.484 433.4 -0.49 -0.155
$\tau$ = 6.7(5)g ns   5592.05 3/2 231.3747 0.162 145.2   0.278 248.9 -0.70 -0.121
    7891.93 5/2 244.3842 0.044 39.1   0.036 32.2 -1.54 -0.015
    11 459.90 7/2 267.7384       0.029 26.0 -1.55 -0.028
    11 654.08 5/2 269.1381 0.027 24.3   0.023 20.6 -1.65 -0.024
    13 136.61 3/2 280.3272       0.001 0.9 -2.97 0.001
    13 414.80 5/2 282.5313       0.025 22.4 -1.57 0.017
    17 242.26 7/2 316.8008       0.001 0.9 -2.87 0.005
    17 424.39 3/2 318.6400       0.056 50.1 -1.12 -0.119
    17 569.40 5/2 320.1196       0.008 7.2 -1.96 0.014
    19 985.93 7/2 346.9690       0.003 2.7 -2.31 -0.013
49 149.39 7/2 0.00 9/2 203.3959       0.014 16.7 -1.98 0.005
$\tau$ = 6.7(6)f ns   3593.15 7/2 219.4403       0.696 831.0 -0.22 -0.259
    3928.94 5/2 221.0700       0.011 13.1 -2.02 -0.006
    7891.93 5/2 242.3068       0.175 208.9 -0.73 -0.125
    11 459.90 7/2 265.2470       0.009 10.7 -1.95 -0.011
    11 654.08 5/2 266.6207       0.012 14.3 -1.82 -0.024
    13 203.88 7/2 278.1168       0.003 3.6 -2.38 -0.009
    13 414.80 5/2 279.7584       0.011 13.1 -1.81 0.015
    15 605.58 9/2 298.0306       0.001 1.2 -2.80 0.019
    17 569.40 5/2 316.5646       0.048 57.3 -1.06 -0.154
    19 590.91 5/2 338.2153       0.002 2.4 -2.38 0.017
    19 985.93 7/2 342.7965       0.002 2.4 -2.37 0.0143
51 770.38 5/2 3593.15 7/2 207.5008       0.001 1.0 -3.19 0.000
[$\tau$ = 8.2 ns]   3928.94 5/2 208.9573       0.048 35.5 -1.63 -0.011
    5592.05 3/2 216.4838       0.562 413.6 -0.54 -0.204
    7891.93 5/2 227.8319       0.148 109.1 -1.07 0.037
    11 459.90 7/2 247.9995       0.028 20.7 -1.72 -0.023
    11 654.08 5/2 249.2001       0.062 45.3 -1.37 0.034
    13 136.61 3/2 258.7635       0.004 3.2 -2.49 0.005
    13 203.88 7/2 259.2149       0.001 1.0 -3.00 -0.002
    13 414.80 5/2 260.6404       0.034 24.8 -1.60 -0.013
    17 242.26 7/2 289.5341       0.001 0.8 -3.00 0.005
    17 424.39 3/2 291.0696       0.058 42.6 -1.27 -0.124
    17 569.40 5/2 292.340       0.004 3.1 -2.40 0.006
    19 590.91 5/2 310.6670       0.002 1.3 -2.72 -0.005
    19 985.93 7/2 314.5281       0.003 2.2 -2.49 -0.0103
51 951.61 9/2 0.00 9/2 192.4868 0.259 810.7   0.182 568.7 -0.50 0.117
$\tau$ = 3.2(3)f ns   3593.15 7/2 206.7230 0.442 1381.7   0.562 1756.2 0.05 -0.501
    11 459.90 7/2 246.8895 0.089 277.2   0.089 278.1 -0.59 0.121
    13 203.88 7/2 258.0024 0.161 502.9   0.097 303.1 -0.52 -0.189
    15 605.58 9/2 275.0519       0.011 34.3 -1.41 -0.058
    17 242.26 7/2 288.0223       0.012 37.5 -1.33 0.047
    17 688.64 11/2 291.7749       0.009 28.2 -1.44 0.166
    21 590.81 9/2 329.2772       0.002 6.2 -2.00 0.023
52 206.48 7/2 0.00 9/2 191.5471       0.001 1.6 -3.05 -0.001
$\tau$ = 4.9(4)f ns   3593.15 7/2 205.6391 0.440 749.6   - - - 0.000
    3928.94 5/2 207.0696 0.415 706.9   0.632 1031.8 -0.18 -0.364
    7891.93 5/2 225.5896       0.002 3.3 -2.60 0.001
    11 459.90 7/2 245.3451       0.060 98.0 -1.05 -0.051
    11 654.08 5/2 246.5200       0.022 35.9 -1.48 0.044
    13 203.88 7/2 256.3163       0.112 182.8 -0.74 0.137
    13 414.80 5/2 257.7101       0.037 60.4 -1.22 -0.044
    15 605.58 9/2 273.1365       0.047 76.7 -1.07 0.112
    17 569.40 5/2 288.6233 0.028 48.3   0.018 29.4 -1.43 -0.055
    19 590.91 5/2 306.5129       0.001 1.6 -2.65 0.004
    21 590.81 9/2 326.5360       0.005 8.2 -1.88 -0.024
54 379.27 7/2 0.00 9/2 183.8936       0.001 2.0 -2.99 0.001
$\tau$ = 4.0(4)f ns   3593.15 7/2 196.9042       0.023 46.0 -1.57 0.013
    3928.94 5/2 198.2148       0.329 658.0 -0.41 -0.282
    7891.93 5/2 215.0447       0.095 190.0 -0.88 -0.103
    11 459.90 7/2 232.9235       0.076 152.0 -0.91 0.057
    11 654.08 5/2 233.9822       0.011 22.0 -1.74 0.031
    13 203.88 7/2 242.7898       0.230 460.0 -0.39 -0.228
    13 414.80 5/2 244.0400       0.019 38.0 -1.47 -0.041
    15 605.58 9/2 257.8296       0.061 122.0 -0.91 -0.113
    17 242.26 7/2 269.1932       0.015 30.0 -1.49 -0.025
    17 569.40 5/2 271.5858       0.009 18.0 -1.70 -0.020
    19 590.91 5/2 287.3681       0.002 4.0 -2.30 0.007
    19 985.93 7/2 290.6688       0.001 2.0 -2.60 0.002
    21 590.81 9/2 304.8967       0.023 46.0 -1.19 0.072
54 445.19 5/2 3593.15 7/2 196.6489       0.057 81.4 -1.33 -0.094
$\tau$ = 4.2(4)f ns   3928.94 5/2 197.9561       0.121 172.8 -0.99 -0.115
    5592.05 3/2 204.6295       0.002 2.9 -2.74 0.004
    7891.93 5/2 214.7401       0.076 108.6 -1.12 0.051
    11 459.90 7/2 232.5663       0.380 542.9 -0.36 0.238
    11 654.08 5/2 233.6218       0.013 18.6 -1.82 -0.029
    13 136.61 3/2 242.0069       0.047 67.1 -1.23 0.071
    13 203.88 7/2 242.4017       0.185 264.3 -0.63 -0.132
    13 414.80 5/2 243.6479       0.001 1.4 -2.90 -0.001
    17 242.26 7/2 268.7162       0.037 52.8 -1.24 0.052
    17 424.39 3/2 270.0383       0.006 8.6 -2.03 -0.018
    17 569.40 5/2 271.1003       0.006 8.6 -2.03 -0.005
    19 590.91 5/2 286.8246       0.011 15.7 -1.71 -0.024
    19 985.93 7/2 290.1127       0.011 15.7 -1.70 0.024
a Van Kleef & Klinkenberg (1961) b Wavelengths are given in vacuum below 200.0 nm and in air above that limit. They are deduced from experimental level values. c Ivarsson et al. (2004) d This work. e Values obtained by combining calculated BFs and experimental lifetimes given in the first column and taken from: f This work and g Ivarsson et al. (2004). Values between brackets are calculated values in this work. h Cancellation factor (see text). A very small value (typically <0.01) of CF means that strong cancellation effects are present in the calculation of the corresponding transition rate.


Source LaTeX | All tables | In the text