Table 5: Branching fractions (BF), transition probabilities (gA in 106 s-1) and oscillator strengths (log gf) for transitions depopulating odd-parity levels in Os I.
Upper levela J Lower levela J $\lambda$(nm)b Experimentc   This work
Energy (cm-1)   Energy (cm-1)     BF gA   BFd gAe log gfe
22 615.69 4 0.00 4 442.0468 0.983      0.963 21.69 -1.20
$\tau$ = 400(50)f ns   4159.32 3 541.6678 0.001     0.002 0.09 -3.40
    5143.92 5 572.1931 0.012     0.028 0.63 -2.51
    11 030.58 4 862.9399       0.006 0.18 -2.70
23 462.90 5 0.00 4 426.0848 0.992 13.64   0.987 13.53 -1.43
$\tau$ = 800(70)g ns   5143.92 5 545.7302       0.011 0.11 -3.31
28 331.77 4 0.00 4 352.8598 0.287 9.72   0.362 14.13 -1.58
$\tau$ = 230(20)f ns   4159.32 3 413.5774 0.515 17.46   0.568 22.23 -1.24
    5143.92 5 431.1391 0.195 6.57   0.045 1.80 -2.30
    8742.83 4 510.3499 0.002 0.09   0.022 0.81 -2.50
28 371.68 3 0.00 4 352.3634       0.255 4.55 -2.07
$\tau$ = 390(50)f ns   2740.49 2 390.0391       0.377 6.79 -1.81
    4159.32 3 412.8957       0.214 3.85 -2.01
    10 165.98 2 549.1259       0.009 0.14 -3.20
    11 030.58 4 576.5048       0.020 0.35 -2.76
    11 378.00 3 588.2910       0.034 0.63 -2.48
    13 364.83 2 666.1784       0.016 0.28 -2.73
    14 091.37 3 700.0718       0.005 0.07 -3.29
    15 222.57 2 760.2984       0.059 1.05 -2.04
    15 390.76 3 770.1494       0.007 0.14 -2.90
29 381.65 3 0.00 4 340.2508       0.059 4.20 -2.14
$\tau$ = 99(8)g ns   2740.49 2 375.2524       0.707 49.98 -0.98
    4159.32 3 396.3619       0.149 10.50 -1.61
    10 165.98 2 520.2637       0.067 4.76 -1.71
    13 364.83 2 624.1710       0.001 0.07 -3.39
    14 091.37 3 653.8296       0.004 0.28 -2.75
    15 222.57 2 706.0659       0.002 0.14 -2.98
    15 390.76 3 714.5538       0.008 0.56 -2.37
30 279.95 5 0.00 4 330.1565 0.935 110.55   0.950 112.31 -0.74
$\tau$ = 93(7)h ns   5143.92 5 397.7228 0.061 7.26   0.041 4.84 -1.94
    8742.83 4 464.1846 0.003 0.33   0.002 0.22 -3.15
    11 030.58 4         0.004 0.44 -2.75
30 591.45 4 0.00 4 326.7945       0.554 50.85 -1.09
$\tau$ = 98(8)f ns   4159.32 3 378.2200       0.427 39.15 -1.08
    8742.83 4 457.5666       0.001 0.09 -3.55
    11 030.58 4 511.0823       0.007 0.63 -2.61
    11 378.00 3 520.3238       0.002 0.18 -3.14
    15 390.76 3 657.6832       0.007 0.63 -2.39
32 684.61 4 0.00 4 305.8655 0.883 283.77   0.864 277.65 -0.41
$\tau$ = 28(2)h ns   4159.32 3 350.4658 0.044 14.13   0.061 19.62 -1.44
    5143.92 5 362.9956 0.002 0.72   0.014 4.50 -2.05
    8742.83 4 417.5622 0.042 13.59   0.026 8.28 -1.66
    11 030.58 4 461.6785 0.017 5.40   0.016 5.13 -1.78
    11 378.00 3 469.2066 0.007 2.25   0.003 0.99 -2.48
    14 091.37 3 537.6804       0.004 1.26 -2.26
    14 338.99 5 544.9378       0.001 0.36 -2.79
    15 390.76 3 578.0799       0.007 2.25 -1.95
33 124.48 3 0.00 4 301.8036       0.867 119.00 -0.79
$\tau$ = 51(4)f ns   2740.49 2 329.0259       0.020 2.73 -2.35
    4159.32 3 345.1435       0.008 1.12 -2.70
    8742.83 4 410.0288       0.007 0.98 -2.61
    11 030.58 4 452.4867       0.024 3.29 -1.99
    11 378.00 3 459.7157       0.001 0.14 -3.35
    12 774.38 2 491.2609       0.013 1.75 -2.20
    13 364.83 2 505.9408       0.001 0.14 -3.27
    15 222.57 2 558.4445       0.055 7.56 -1.45
34 365.33 5 0.00 4 290.9057 0.978 448.47   0.988 434.72 -0.26
$\tau$ = 25(2)f ns   8742.83 4 390.1714 0.007 3.08   0.007 3.08 -2.15
    11030.58 4 428.449 0.010 4.40   0.003 1.32 -2.44
34 803.82 4 0.00 4 287.2405       0.133 20.61 -1.59
$\tau$ = 58(5)f ns   4159.32 3 326.2288       0.464 72.00 -0.94
    5143.92 5 337.0587       0.310 48.06 -1.09
    8742.83 4 383.6064       0.042 6.48 -1.84
    11 030.58 4 420.5225       0.003 0.45 -2.92
    11 378.00 3 426.7593       0.002 0.27 -3.13
    14 091.37 3 482.6665       0.006 0.90 -2.50
    15 390.76 3 514.9737       0.032 4.95 -1.71
    18 901.94 3 628.6826       0.004 0.63 -2.43
35 615.92 3 0.00 4 280.6906       0.611 137.97 -0.79
$\tau$ = 31(2)f ns   2740.49 2 304.0900       0.252 56.91 -1.10
    4159.32 3 317.8064       0.024 5.39 -2.09
    8742.83 4 372.0136       0.052 11.76 -1.61
    11 030.58 4 406.6316       0.006 1.33 -2.48
    11 378.00 3 412.4603       0.016 3.64 -2.03
    12 774.38 2 437.6759       0.005 1.12 -2.49
    13 364.83 2 449.2901       0.006 1.33 -2.39
    14 848.05 4 481.3785       0.004 0.91 -2.50
    15 222.57 2 490.2190       0.016 3.64 -1.88
    15 390.76 3 494.2957       0.003 0.70 -2.59
    18 901.94 3 598.1358       0.001 0.21 -2.95
    21 303.36 2 698.4944       0.001 0.21 -2.81
36 826.39 4 0.00 4 271.4639       0.422 84.42 -1.03
$\tau$ = 45(4)f ns   4159.32 3 306.0297       0.040 8.01 -1.95
    5143.92 5 315.5406       0.005 0.99 -2.83
    8742.83 4 355.9785       0.281 56.16 -0.97
    11 030.58 4 387.5500       0.002 0.36 -3.09
    11 378.00 3 392.8409       0.027 5.40 -1.90
    14 091.37 3 439.7265       0.061 12.15 -1.45
    14 338.99 5 444.5687       0.009 1.80 -2.27
    14 848.05 4 454.8659       0.040 8.01 -1.60
    15 390.76 3 466.3824       0.103 20.61 -1.17
    19 108.87 4 564.2565       0.007 1.44 -2.16
    21 123.66 3 636.6559       0.002 0.36 -2.66
37 908.77 4 0.00 4 263.7126       0.759 243.90 -0.59
$\tau$ = 28(2)f ns   4159.32 3 296.2146       0.124 39.87 -1.28
    5143.92 5 305.1164       0.016 5.13 -2.14
    8742.83 4 342.7674       0.077 24.75 -1.36
    11 378.00 3 376.8138       0.004 1.26 -2.57
    14 091.37 3 419.7428       0.007 2.25 -2.23
    14 848.05 4 433.5159       0.007 2.25 -2.20
    18 901.94 3 525.9803       0.002 0.63 -2.58
40 361.92 4 0.00 4 247.6835       0.127 134.46 -0.91
$\tau$ = 8.5(7)f ns   4159.32 3 276.1417       0.076 80.46 -1.04
    5143.92 5 283.8622       0.744 787.77 -0.02
    8742.83 4 316.1731       0.023 24.39 -1.44
    11 378.00 3 344.9201       0.009 9.54 -1.77
    14 848.05 4 391.8327       0.017 18.00 -1.38
46 776.29 3 0.00 4 213.7161       0.272 396.69 -0.57
$\tau$ = 4.8(3)f ns   2740.49 2 227.0178       0.294 428.75 -0.48
    4159.32 3 234.5765       0.023 33.53 -1.56
    8742.83 4 262.8480       0.025 36.47 -1.42
    10 165.98 2 273.0663       0.021 30.59 -1.47
    11 030.58 4 279.6714       0.090 131.25 -0.81
    11 378.00 3 282.4164       0.034 49.56 -1.23
    12 774.38 2 294.0151       0.001 1.47 -2.72
    13 364.83 2 299.2112       0.008 11.69 -1.80
    14 091.37 3 305.8626       0.013 18.97 -1.57
    14 848.05 4 313.1116       0.116 169.19 -0.60
    15 222.57 2 316.8282       0.073 106.47 -0.79
    19 108.87 4 361.3329       0.002 2.94 -2.24
    19 410.66 2 365.3178       0.003 4.34 -2.06
    21 123.66 3 389.7132       0.002 2.94 -2.17
    21 303.36 2 392.4625       0.001 1.47 -2.47
    23 317.60 2 426.1613       0.003 4.34 -1.93
    23 984.58 3 438.6328       0.001 1.47 -2.37
    25 601.55 4 472.1287       0.003 4.34 -1.84
    27 350.96 3 514.6484       0.002 2.94 -1.93
    28 139.52 3 536.4245       0.002 2.94 -1.90
    29 394.30 4 575.1486       0.003 4.34 -1.67
a From Van Kleef & Klinkenberg (1961).
b Wavelengths in air are deduced from experimental level values.
c From Ivarsson et al. (2003) d Branching fractions calculated using the HFR + CP method (see text).
e Values obtained by combining calculated BFs and experimental lifetimes given in the first column and taken from:
f This work.
g Kwiatkowski et al. (1984).
h Ivarsson et al. (2003).


Source LaTeX | All tables | In the text