Table 9: Dependences of the normalized flux ratios on redshift and absolute B magnitude.
Line Ratio slope $r_{\rm S}$a $p(r_{\rm S})$b
vs. redshift
N V/C IV -0.000 $\pm$ 0.013 +0.05 $8.2 \times 10^{-1}$
Si II/C IV +0.042 $\pm$ 0.045 +0.47 $3.2 \times 10^{-2}$
(O I+Si II)/C IV +0.086 $\pm$ 0.032 +0.66 $1.0 \times 10^{-3}$
C II/C IV +0.028 $\pm$ 0.042 +0.34 $1.3 \times 10^{-1}$
(Si IV+O IV)/C IV -0.003 $\pm$ 0.014 +0.12 $5.9 \times 10^{-1}$
(1600${\rm\AA}$ bump)/C IV -0.076 $\pm$ 0.031 -0.20 $3.8 \times 10^{-1}$
He II/C IV -0.057 $\pm$ 0.015 -0.59 $5.3 \times 10^{-3}$
(O III]+Al II)/C II -0.085 $\pm$ 0.027 -0.31 $1.7 \times 10^{-1}$
Al III/C IV -0.030 $\pm$ 0.022 -0.37 $1.3 \times 10^{-1}$
Si III]/C IV +0.007 $\pm$ 0.066 -0.07 $7.9 \times 10^{-1}$
C III]/C IV +0.002 $\pm$ 0.023 +0.19 $4.5 \times 10^{-1}$
N V/He II +0.057 $\pm$ 0.020 +0.32 $1.6 \times 10^{-1}$
vs. absolute B magnitude
N V/C IV +0.082 $\pm$ 0.006 +0.95 $2.7 \times 10^{-11}$
Si II/C IV +0.039 $\pm$ 0.018 +0.53 $1.3 \times 10^{-2}$
(O I+Si II)/C IV +0.039 $\pm$ 0.013 +0.48 $2.9 \times 10^{-2}$
C II/C IV +0.059 $\pm$ 0.018 +0.50 $2.2 \times 10^{-2}$
(Si IV+O IV)/C IV +0.059 $\pm$ 0.006 +0.95 $6.4 \times 10^{-11}$
(1600${\rm\AA}$ bump)/C IV -0.068 $\pm$ 0.018 -0.88 $1.4 \times 10^{-7}$
He II/C IV -0.031 $\pm$ 0.008 -0.70 $3.9 \times 10^{-4}$
(O III]+Al II)/C II -0.001 $\pm$ 0.012 +0.10 $6.6 \times 10^{-1}$
Al III/C IV +0.076 $\pm$ 0.009 +0.95 $3.3 \times 10^{-9}$
Si III]/C IV +0.088 $\pm$ 0.018 +0.77 $2.0 \times 10^{-4}$
C III]/C IV +0.009 $\pm$ 0.008 +0.16 $5.3 \times 10^{-1}$
N V/He II +0.113 $\pm$ 0.007 +0.97 $1.1 \times 10^{-13}$
a Spearman rank-order correlation coefficient.
b Probability of the data being consistent with the null hypothesis that the flux ratio is not correlated with redshift or absolute B magnitude.

Source LaTeX | All tables | In the text