Table 2: Dominant modes in the linear phase of the numerical simulations. wi,kj: maximum growth rate for the jth overtone wavenumber excited in the simulation (see Table 1) derived from linear stability analysis. Left columns: symmetric mode; right columns: antisymmetric one. The dominant mode refers to the mode with the largest amplitude in rest mass density perturbation as derived from Fourier analysis of the box, written from larger to smaller amplitude when more than one is present. wi: fitted pressure perturbation growth rate for the linear regime in the simulation. Growth rate values are in c/Rj units. *: models where irregular growth affects the evolution (see text).
Model wi,k0 wi,k1 wi,k2 wi,k3 Dominant wi
  Symm.$\quad $Antis. Symm. $\quad $Antis. Symm.$\quad $ Antis. Symm. $\quad $ Antis.    
A2.5 0.036 $\quad $ 0.032 0.038$\quad $ 0.037 0.034 $\quad $ 0.036 0.031$\quad $ 0.034 k0 0.030
B2.5 0.042 $\quad $ 0.056 0.070$\quad $ 0.052 0.066 $\quad $ 0.084 0.073$\quad $ 0.080 k1, k2 0.070
D2.5 0.046 $\quad $ 0.160 0.131$\quad $ 0.182 0.210 $\quad $ 0.194 0.142$\quad $ 0.256 k2, k1 0.200
B05 0.037 $\quad $ 0.035 0.037$\quad $ 0.044 0.036 $\quad $ 0.038 0.034$\quad $ 0.035 k0, k1 0.035
D05 0.068 $\quad $ 0.063 0.085$\quad $ 0.063 0.100 $\quad $ 0.068 0.068$\quad $ 0.110 k1, k2, k0 0.080
A10 0.009 $\quad $ 0.009 0.006$\quad $ 0.006 0.005 $\quad $ 0.006 0.006$\quad $ 0.006 k0* 0.004 (0.005)
B10 0.022 $\quad $ 0.018 0.019$\quad $ 0.021 0.018 $\quad $ 0.017 0.013$\quad $ 0.013 k0 0.020
D10 0.034 $\quad $ 0.038 0.041$\quad $ 0.037 0.044 $\quad $ 0.034 0.051$\quad $ 0.035 k1, k2 0.040
B20 0.011 $\quad $ 0.010 0.009$\quad $ 0.010 0.007 $\quad $ 0.007 0.009$\quad $ 0.010 k0* 0.006 (0.008)
D20 0.018 $\quad $ 0.018 0.020$\quad $ 0.017 0.022 $\quad $ 0.017 0.027$\quad $ 0.028 k1, k0 0.016


Source LaTeX | All tables | In the text