Table 2: Values for $\dot{M}$ from the literature. We only show values that are obtained from observations of the mass loss from the system, hence not those inferred from the evolution of the orbital period. All estimates except Ogley et al. (2001)d assume spherical symmetry. See the main text for details.
Estimated $\dot{M}$ Reference
$(0.2{-}2.7) \times 10^{-5}~M_\odot$ yr-1 Waltman et al. (1996)a
$4 \times 10^{-5}~M_\odot$ yr-1 van Kerkwijk (1993)b
$\la$ $10^{-4}~M_\odot$ yr-1 van Kerkwijk et al. (1996)c
$(0.4{-}2.9) \times 10^{-4}~M_\odot$ yr-1 Ogley et al. (2001)
$\la$ $10^{-5}~M_\odot$ yr-1 Ogley et al. (2001)d
$\sim$ $1.2 \times 10^{-4}~M_\odot$ yr-1 Koch-Miramond et al. (2002)e
$(0.5{-}3.6) \times 10^{-6}~M_\odot$ yr-1 Miller-Jones et al. (2005)f
a From delays between the 15, 8.3, and 2.25 GHz radio light curves, assuming a jet velocity of 0.3 c.
b W & B model, from K-band observations, taking the wind velocity to be vw = 1000 km s-1.
c W & B model, from new I- and K-band observations, which gave an improved value for the wind velocity $v_w \sim 1500$ km s-1.
d Adopting the non-spherical, disk-like model by Fender et al. (1999) and using the Gorenstein (1975) approximation for X-ray absorption.
e W & B model, taking vw = 1500 km s-1.
f From delays between the 43 and 15 GHz radio light curves, assuming a jet velocity of 0.6 c.

Source LaTeX | All tables | In the text