Table 1: Secular resonances involving the perihelion, the node, and combinations of perihelion and node of the asteroid. The first, third, and fifth columns report the resonant argument in terms of the planetary frequencies, and the second, fourth, and sixth we give the names we use in this article.
Perihelion res. Names Node res. Names Perihelion and node res. Names
g - 2g5 - g6 + 2g7 ${\gamma}_1$ s -s6 + g6 - g7 ${\sigma}_1$ 2g - g6 - g4 + s - s4 ${\psi}_1$
2g - 2g6 +g5 - g4 ${\gamma }_2$ s -s6 - g5 + g6 ${\sigma}_2$ 2g - g6 - g7 + s - s7 ${\psi}_2$
2g - 2g6 + g7 - g4 ${\gamma}_{3a}$ s - 2s6 + s7 ${\sigma}_3$ 2g - g5 - g6 + s - s7 ${\psi}_3$
2g - 3g6 + g4 ${\gamma}_{3b}$ s - 2s6 + s4 ${\sigma}_4$ 2(g-g6) + s - s6 ${\psi}_4$,z2
g + 2g5 - 3g4 ${\gamma}_4$ s - s6 - g7 + g4 ${\sigma}_{5a}$ g - g4 + 2s - 2s6 ${\psi}_5$
g + g5 + g7 - 3g4 ${\gamma}_{5a}$ s - s6 + g6 - g4 ${\sigma}_{5b}$ g - g5 + 2s- s6 - s4 ${\psi}_6$
g + g5 - g6 - g4 ${\gamma}_{5b}$ s - s4 - g5 + g6 ${\sigma}_{6}$ g - g7 + 2s - s6 - s4 ${\psi}_7$
g + g5 - 2g6 - g7 + g4 ${\gamma}_{5c}$ s -s4 + g6 - g7 ${\sigma}_7$ g - g5 + 2s- 2s6 ${\psi}_8$
g + 2g7 - 3g4 ${\gamma}_{6a}$     g - g7 +2s - 2s6 ${\psi}_9$
g - g6 + g7 - g4 ${\gamma}_{6b}$        
g - 2g6 + g4 ${\gamma}_{6c}$        


Source LaTeX | All tables | In the text