A&A 440, 239-248 (2005)
DOI: 10.1051/0004-6361:20042552
E. Brandi1,2 - J. Mikoajewska3 - C.
Quiroga1,4 - K. Belczynski5 - O. E. Ferrer1,4 -
L. G. García1 - C. B. Pereira6
1 - Facultad de Ciencias Astronómicas y Geofísicas,
Universidad Nacional de La Plata, Argentina
2 -
Comisión de Investigaciones Científicas de la Provincia de
Buenos Aires (CIC), Argentina
3 -
Copernicus Astronomical Center, Warsaw, Poland
4 -
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Argentina
5 -
Department of Physics and Astronomy, Northwestern University, 2131
Sheridan Road, Evanston, IL 60208 - 2900, USA
6 -
Observatório Nacional - Rua Gen. José Cristino, 77, Sao Cristovao -
CEP 20921-400, Rio de Janeiro, Brazil
Received 15 December 2004 / Accepted 28 April 2005
Abstract
We present a study of the eclipsing symbiotic binary FN Sgr with
a period of 568.3 days determined photometrically and confirmed spectroscopically.
The hot component underwent a 2.5 mag eruption covered by most of our spectroscopic
observations.
In particular, we have determined for the first time spectroscopic orbits based
on the radial velocity curves for both components.
A set of blue absorption lines resembling an A-F type star is present in all our spectra
and they seem to be associated with the hot component.
Based on the light curve, we derive the red giant's radius (
)
and the orbital inclination (i = 80
). We find that FN Sgr is similar to
other S-type symbiotic binaries, composed by an M 5-type giant (
)
and a hot white dwarf (
,
)
with a binary separation of
1.6 AU.
The red giant is just filling its Roche lobe and a geometrically and
optically thick accretion disk is likely to be present around the low-mass accretor.
The evolution of
and
along the active phase argues in
favour of accretion disk instabilities similar to those of Z And.
We have also studied spectral changes and photometric variations as a
function of both the hot component activity and the orbital motion.
Key words: stars: binaries: eclipsing - stars: binaries: symbiotic - stars: fundamental parameters - stars: individual: FN Sgr
Although we know of about 188 symbiotic stars, and another 28
are suspected to be symbiotic (Belczynski et al. 2000),
only around 40 systems have known orbital
periods and in only 27 systems were spectroscopic orbits determined
(Mikoajewska 2003).
The majority of the symbiotic systems with known orbital period are S-type,
and their periods are generally of the order
200-1000 days.
Periods of D-type systems are harder to estimate because they are much
longer and are superimposed with pulsations of the Mira variable; for
the Mira Symbiotics V1016 Cyg and R Aqr orbital periods of about 80 years
(Schild & Schmid 1996)
and 44 years (Hollis et al. 1997) respectively, were estimated.
For a detailed review of orbital parameters of symbiotic binaries we refer
the reader to Miko
ajewska (2003).
This work is part of a major project in which we determine periods and spectroscopic orbits of symbiotic binaries on the basis of spectroscopic data collected over more than ten years. In selecting the southern S-type symbiotic star FN Sgr, we chose to use visual photometry from the Variable Star Section Circulars of The Royal Astronomical Society of New Zealand (RASNZ) over 30 years (1972-2002) and high resolution spectra obtained with the 2.15 m telescope of CASLEO (San Juan, Argentina) during the period 1990-2002.
Spectroscopic observations were performed with the 2.15 m "Jorge Sahade''
telescope of CASLEO (San Juan, Argentina).
During 1990 medium-low resolution spectra were taken with a Boller & Chivens
Cassegrain spectrograph using a photon-counting Reticon, called the Z-Machine
(
and 2700 in the
blue and red filters respectively). Since 1995, high resolution spectra were
obtained with a REOSC echelle spectrograph using a Tek CCD
pixels
(
).
Three low resolution spectra were taken with the 1.52 m telescope of ESO at
La Silla (Chile) and the B and C spectrograph used in the spectral ranges
3450-7425 and 3099-5098 Å.
Table 1 shows a log of the observations.
Barbá et al. (1992) detail the Z-Machine acquiring and reducing
data procedures. The CCD data were
reduced with IRAF
packages, CCDRED and ECHELLE and all the spectra were measured
using the SPLOT task within IRAF.
To obtain the flux calibration, standard stars from Hamuy et al. (1992) and Hamuy et al. (1994) were observed each night. A comparison of the spectra of the standards suggests that the flux calibration errors are about 15 per cent for the Z-Machine and 20 per cent in the central part of each order for the REOSC echelle images, respectively.
In our analysis we have included the
flux and radial velocity measurements of the H,
He II
4686 and
[O III]
5007 emission lines given by Van Winckel
(1993), corresponding to July 1988 (
)
and
September 1989 (
).
![]() |
Figure 1:
( Top) visual light curve of FN Sgr in 1972-2002. Dots: visual
observations from RASNZ, open circles: V magnitudes calculated from our
spectra and those from Barbá et al. (1992), square: from Munari et al.
(1992), and triangles: derived from FES counts.
( Bottom) evolution of emission line fluxes of H![]() |
The main source of photometric data in this work consists of mean visual
estimates published in the Variable Star Section Circulars of The Royal
Astronomical Society of New Zealand in the years 1972-2002.
We have also estimated V magnitudes by integration and convolution of the
spectra with the standard V filter response function. These
estimations,
,
are
included in the last row of Table 2 and its accuracy is of the
order of
0.2 mag.
Collected visual and V photometry is shown in Fig. 1.
The light curve of FN Sgr (JD 2 441 500-2 452 600) shows a systematic
brightness decline with moderate periodic-like light changes, and with
one major eruption around JD 2 451 000.
We have analyzed the RASNZ visual photometry using the period-search method
described by Schwarzenberg-Czerny (1997). The periodogram shown in
Fig. 2 has been obtained from all visual data presented in
Fig. 1. We obtained two significant frequency peaks ()
which occur at
and
,
respectively. The highest frequency peak represents light changes
with an amplitude of about 0.7 mag and a period of 568 days while the lower
peak corresponds to a period
3100 days which is more than half of the
time interval covered by our observations. It is also induced by the 2.5 mag outburst around
JD 2 451 000 seen in Fig. 1. To construct the phase
diagram, we divided observational points into two groups: those from the
quiescent phase (JD 2 441 500-2 449 977) and those from the active phase
(JD 2 450 007 - 2 452 000). Points from the quiescent phase were corrected for the
brightness decline to make the periodic light changes more visible.
We phased both groups using
In Table 2 we list the emission line fluxes, obtained by
integrating the line profile above the linearly interpolated continuum.
We have also measured the relative depth of the TiO 6180 absorption band,
to obtain the [TiO]1 molecular index and the spectral
type of the cool component of FN Sgr, according to the calibration given by
Kenyon & Fernandez-Castro (1987).
Most of our spectroscopic observations were taken during the optical outburst phase (Fig. 1). The outburst behaviour is similar to that observed in other classical symbiotic stars (e.g. CI Cyg and AX Per). The rise in optical brightness was first accompanied by a large increase in the [O III] emission lines and broadening of the emission line wings (Fig. 3). The permitted H I and He I emission lines were also increasing although not as much as the forbidden lines, whereas He II 4686 was decreasing. Then, near the visual maximum (1996-1998) the [O III] emission decreased, and He II 4686 practically disappeared. At the same time the permitted emission lines have maximum widths. In 1999, the visual brightness gradually declined with increasing the [O III] and He II emission lines.
The [O III] nebular emission reached maximum intensity in
May 1999, and after that it declined following the visual magnitudes.
He II 4686 emission reached maximum intensity in
September-October 2000,
somewhat later than the forbidden line emissions. On the other hand,
the forbidden line [Fe VII]6087 was absent during the outburst,
and then the intensity increased since July 2000, reaching maximum in April 2002.
In Fig. 4 we present a few emission line fluxes and the[TiO]1 index variations as a function of the orbital phase. The [TiO]1 indices are much deeper near the photometric minimum than around the maxima, indicating a spectral type as late as M5 III. All this suggests that the continuum level changes due to occultation of both the hot component and part of the nebulosity by the M giant companion during the minima and that the spectral type of the giant is earlier during the maxima indicating strong contamination by the hot component and the ionized nebula.
The H I, He I and He II fluxes decreased in intensity around
primary minima. The emission line He II4686 decreased in
intensity by roughly a factor of two and it suffers narrower eclipses than do
H I and He I lines (Fig. 4).
Although the forbidden line fluxes [O III] and [Fe VII] show
significant
variations along the optical brightness they do not change during the
photometric minima suggesting that these emission lines are formed in an
extended region. This behavior parallels that observed in CI Cyg
(Kenyon et al. 1991) and AX Per (Miko
ajewska & Kenyon
1992).
In general, in the observed members of the Balmer series, the broad emission
is cut by a central absorption and the red peak is stronger than the
blue one.
The H emission profiles are shown in the left panel of
Fig. 3.
In August 1995, April and August 2002 (not shown in Fig. 3)
the absorption is very weak or
absent and the double peak structure is replaced by an asymmetric
single profile. The largest value of the absorption intensity
(see Table 2) is observed in September 1998-May 1999, during
the maximum of the light curve and no intensity variation with the phases
was detected.
A similar behavior is presented by the central absortions of H
and H
.
The radial velocity of this feature is practicaly constant,
-88
2 km s-1; -78
1 km s-1 and -77
0.4 km s-1
in H
,
H
and H
respectively.
We present the radial velocity curves for both components of
the system FN Sgr.
For the cool component we have measured M-type absorption
lines at wavelengths longer than 6000 Å corresponding to Fe I,
Ti I, Ni I, Si I, O I, Zr I, Co I,
V I and Mg I. In the blue region, between
4000-5000 Å we have
measured cF-type absorption lines corresponding mainly to Cr II,
Fe II, Ti II and Y II. The radial velocity curve of
these ions seems to be in anti-phase with that of the cool star. The emission
lines of He I, He II, Fe II and forbidden transitions of
[O III] and [Fe VII] were also measured. The individual radial
velocities were obtained by a Gaussian fit of the line profiles. A mean value
was calculated for each spectrum and the resulting heliocentric velocities
together with their standard errors and the number of measured lines are given in
Table 3.
In addition we have determined the radial velocities from the broad emission
line wings of H,
H
and He II
4686, which would
reflect the motion of the hot component if they were formed in the inner region
of the accretion disk or near to the hot star. In this way we have applied the
same method that Schneider & Young (1980) and Shafter
(1983) succesfuly used in studies of cataclysmic binaries (for more
details about the application of this method to symbiotic binaries, see
Quiroga et al. 2002). However, the Balmer line wings
are at times affected by a mixture of Raman and Rayleigh scattering
(Jung & Lee 2004) and it
is therefore not clear if they are associated with the hot component motion.
This may explain the large scatter in the radial velocity curves in
Fig. 6c.
![]() |
Figure 3: Emission line profiles in FN Sgr. Each profile was normalized to maximum intensity. The profiles are shifted vertically for better display. |
The M-abs radial velocity variations are consistent with the photometric period
over more than seven photometric cycles covered
by our data (see Fig. 5), so we adopt
days.
In order to find the other orbital parameters: T0,
the time of periastron passage (or
spectroscopic conjunction for e = 0 solutions);
,
the baricentral velocity; K, the semi-amplitude and
,
the longitude
of periastron, we applied Bertiau's program (1967) based on the
Lehmenn-Filhés method, considering both cases,
e = 0 and e
0.
Table 4 gives the constrained solutions to circular orbits and the
best fitting for an eccentric orbit for the indicated groups of absorption
and emission lines.
is the time difference
between spectroscopic conjunction and photometric minimum.
The circular orbit for the M-abs line fits very well the radial
velocity data of the giant (Fig. 6, panel a), but an orbit
with a low eccentricity
(e =
)
represents the best solution.
The times of spectroscopic conjunction coincides with optical
eclipses for circular and quasi-circular orbits, so the absorption
lines trace the cool component's motion.
The best solution for the cF-type absorption features (as well as that for the
He II broad emission line wings) leads to significant eccentricity
(e = 0.33), whereas the red giant orbit is circular or nearly
circular. A similar result was obtained for AR Pav, in which
the eccentricity apparently increases with the hot component activity
(Quiroga et al. 2002). Moreover,
in both FN Sgr and AR Pav the periastron longitude of the
elliptical orbit solution for the hot component is near
indicating that the apparent eccentricity may be an effect
tied to the line of sight.
The cF-type absorption velocities are 180
out of phase with the
M-giant and the systemic velocity is blueshifted by
5 km s-1.
The dotted curve in the panel b of Fig. 6 is the best-fitting
circular solution for these data.
Combining the semi-amplitudes of the M giant and the blue absorption component
for the circular orbit (Table 4) gives a mass ratio
,
component masses of
and
,
and the binary separation
.
On the other hand, considering the combined
circular solutions, the M giant, the blue absorptions and the
He II wings,
,
and
with a binary
separation
.
Both the mass ratio and component masses
obtained for FN Sgr
are similar to those derived for other S-type symbiotic systems
(e.g. Miko
ajewska 2003,
and references therein).
The He I, He II and Fe II emission lines seem also to
follow the hot
component's motion, but their semi-amplitudes, 16 km s-1 for
He I and He II and 9 km s-1 for Fe II, are lower than
that obtained from the cF-type absorptions.
The Fe II curve shows a more negative baricentral velocity
6 km s-1and a larger difference between the time of the spectroscopic conjunction
and the eclipse.
In the case of He I and He II, the
velocity
-54 km s-1
is nearer to that of the giant and the derived time of spectroscopic
conjunction differs from the photometric minimum by around 32 days.
Such behavior can be explained, as in AR Pav (Schild et al. 2001;
Quiroga et al. 2002), by a
contribution from material between the two stars and in the neighborgood
of the red giant which can both reduce the amplitude and
shift the mean velocity, as for Fe II.
The forbidden lines [O III]5007 and [Fe VII]
6085 also show variable velocities
(see Table 3), but their changes do not follow the orbital motion of
either binary component. As shown in Fig. 6 panels g
and h, the radial velocities of
5007 present a deep minimum near the
eclipse and the same is observed in the [Fe VII]
6085, but at
phases 0.2-0.4.
The profiles of both lines show a double structure at some specific epochs.
As can be seen in Fig. 3, the [O III]
5007 profiles
present, in general, asymmetries or a weak component to the red side, except at
phases 0.08 (April 2001) and 0.98 (September 2002), when the deep minimum in
radial velocity is observed.
The [Fe VII]
6085 profiles also show two peaks, sometimes very
conspicuous with a separation of
90 km s-1, but the profile is single
and symmetric at the same phases (0.08 and 0.98).
In order to approximate the individual masses of the FN Sgr system the orbital
inclination can be estimated by:
Useful constraints on both the red giant radius
and the eclipsed gas
can be derived from the light curves shown in
Fig. 1.
If the eclipsed gas volume is centered on the hot star, we can define
and
as the duration of the eclipse and the duration of totality,
respectively, and they are related to
and
by
In order to know the physical parameters of FN Sgr we have to obtain a good determination of the interstellar extinction and distance.
The interstellar reddening was derived from He I, H I and He II
emission line ratios (excluding the spectra taken during the visual maximum when
He II lines are very weak or absent),
in the same way as Mikoajewska et al. (1997) did.
In particular,
ratios indicate
,
HeI 6675/5876 and 7065/5876 are consistent with
and the He II 4686/5411 ratios
indicate
.
Comparing the He II 4686 mean out-of-eclipse fluxes observed in
1990-95 with the He II 1640 flux measured in the IUE spectrum in 1992,
we estimate an upper limit for
because the
He II 1640 line was saturated in the IUE image.
These values can be compared with the galactic extinction towards FN Sgr
(
l=16.2,b=-9.0) which is
(Burstein & Heiles
1982). For further analysis, we adopt
EB-V=0.2.
The [TiO]1 index measured during the eclipse indicates an M5 giant, consistent
with the JHK colours of FN Sgr (Munari et al. 1992) and
.
Using the spectral parallax method for mean dereddened K0=7.8, the spectral
type M 5III, and
MK=-6.4 (derived from evolutionary tracks for a solar
metallicity 1.6
giant) we obtain d=7 kpc. If the cool giant is
similar to the galactic buldge giants rather than to the bright local giants,
we estimate d=5 kpc. The upper limit to the distance, assuming that the giant fills its
tidal lobe, is
kpc which places FN Sgr in the galactic buldge.
Knowing the eclipse radius of the M giant provides an opportunity
to estimate the distance to FN Sgr. Using the Barnes-Evans relation
(Cahn 1980),
![]() |
(3) |
![]() |
Figure 5:
Circular orbital solution for
![]() |
During the eclipse the giant occults some features of H I, He I and
He II at
primary minimum (Fig. 4), but does not affect the forbidden lines of
[O III] and [Fe VII]. As in CI Cyg and AX Per
(Kenyon et al. 1991; Mikoajewska & Kenyon 1992) we can
consider the nebula divided into the eclipsed and the uneclipsed gas.
Almost 90% of the He II 4686 flux vanishes during the primary
minima along the eruption. The duration of this eclipse
which combined with
gives the fractional radio of the eclipsed region
,
or
.
With an average integrated line flux during the eclipse,
erg cm-2 s-1, we estimated the
electron density in the He II region as
cm-3 for
K.
Similar considerations can be made for the eclipsed H I and He I emission
lines which
are less deep and broader than those of He II, especially H I, indicating
that the region is not completely occulted. We estimated
/196
for H I and He I respectively, so
and
.
The H
flux from the eclipsed region,
-13 ergs cm-2 s-1, suggests
cm-3 for
K.
The forbidden lines [O III]
5007, 4959 and 4363 do not show
intensity variations at primary minimum, although important variations along the
eruption were observed.
When it was possible to measure the three lines in our spectra, the reddening
corrected line ratio
)
was
calculated.
In general, R increases during the outburst, and extreme values
such as 0.7 and 15.7 were measured at MJD 49 945 and MJD 51 065/70, respectively.
The former value of R corresponds to minimum values of
and
whereas the latter is consistent with
and any values of
.
Generally, an increase in R implies a decreases in
if
is held constant,
and decreases in
if
is held constant.
The [O III] emission line flux significantly increases during the outburst with a local minimum
around MJD 51 065/70, coincinding with a drop in the He II 4686 emission line flux.
A useful diagnostic for the changing physical conditions within the symbiotic nebula is provided
by the He I
5876, 6678, 7065 emission line ratios (Proga et al.
1994).
In FN Sgr, the He I ratios change significantly during the outburst, in particular,
both
and
decrease
during the optical maximum. Similar outburst evolution of the He I lines has been
noted in a few other S-type systems, and all of them show - like FN Sgr - relatively
cool A or F-type
optical continua throughout the outburst.
This evolution of He I lines can be best explained by a decrease in the average
of the nebula (Proga et al. 1994).
Such a change seems plausible if the hot component produces more He-ionizing photons
and ionizes a larger region of lower average density.
Component | K | ![]() |
e | ![]() |
T01 |
![]() |
![]() |
f(M) |
[km s-1] | [km s-1] | [deg] | [JD 24...] | [day] | [AU] | [![]() |
||
M giant |
![]() |
![]() |
03 | 2.2 | 0.52 | 0.0580 | ||
M giant |
![]() |
![]() |
![]() |
![]() |
50995 | 7.1 | 0.52 | 0.0586 |
cF-abs |
![]() |
![]() |
03 | 50718 | -24.8 | 1.15 | 0.6300 | |
cF-abs |
![]() |
![]() |
![]() |
![]() |
51614 | -16.4 | 1.15 | 0.6259 |
He II wings |
![]() |
![]() |
03 | 29.0 | 0.88 | 0.2795 | ||
He II wings |
![]() |
![]() |
![]() |
![]() |
53424 | 26.8 | 0.90 | 0.3042 |
H![]() ![]() |
![]() |
![]() |
03 | -19.1 | 0.57 | 0.0783 | ||
Fe II | ![]() |
![]() |
03 | -75.3 | 0.48 | 0.0468 | ||
He I |
![]() |
![]() |
03 | -32.2 | 0.82 | 0.2310 | ||
He II |
![]() |
![]() |
03 | -33.1 | 0.86 | 0.2656 | ||
[Fe VII]![]() |
![]() |
![]() |
03 | 95.2 | 1.13 | 0.6028 |
1 Time of the passage through periastron. 2 ![]() 3 Assumed. |
Observations of CI Cyg and AX Per suggest that the He+ region actually shrinks
in the orbital plane during their optical eruptions (Mikoajewska 1985;
Miko
ajewska & Kenyon 1992), probably due to the presence of an optically
and geometrically thick accretion disc which prevents ionization and excitation in the
orbital plane.
Unfortunately, our spectroscopic data are unsufficient to make a similar analysis for FN Sgr,
however the similarity of the outburst evolution of the visual light curves of FN Sgr
and those of CI Cyg suggests that the same may happen in FN Sgr.
The apparent decrease in nebular size in the orbital plane then implies a large increase
in nebular size perpendicular to the orbital plane, accompanied
by a decrease in the average nebular density. Such a scenario is consistent with the observed
evolution of the [O III] and He I emission lines.
If we assume that the [O III] lines arise from a homogeneous nebula with
-16 000 K and
-107 cm-3, the size of the
[O III] emitting region can be calculated (Miko
ajewska 1985)
using the unreddened
flux of the
5007 line and adopting the distance d = 7.5 kpc. We obtain a range
for the radius of 3-16 AU which is larger than the whole binary size and this
may well explain the lack of eclipses in the [O III] lines.
As in CI Cyg and AX Per, the [Fe VII] forbidden lines are the other emission
lines which are unaffected by eclipses.
Two broad emission lines, 6825 and
7082 Å, are frequently
observed in symbiotic stars
with high excitation nebulae and they are formed
by Raman scattering of the OVI
1031, 1038 resonance lines by neutral hydrogen (Schmid 1989).
Only a weak and broad emission at
6825 Å is observed in several spectra of
FN Sgr. The other feature is not detectable in the noisy region at the
end of the aperture.
No changes with the orbital phase are
detected but during the period MJD 51325-51791, at the
maximum of the light curve, the line
6825 Å is absent and the intensity
increases when the brightness decreases, recovering almost the same intensity
observed before the eruption.
A probable explanation is alterations suffered by the scattering mechanism
in the circumstellar medium during the explosion. Raman scattering is probably
not working or it is less efficient because the UV photons are quickly absorbed
by thick and expanded material around the hot component.
JD1/phase | Temperature | Luminosity
![]() |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
48 117/0.2123 | 114 | |||||
48 190/0.3603 | 114 | 170 | 1460 | 1800 | 1440 | |
48 203/0.3663 | 114 | 150 | 1080 | 1200 | 430 | |
49 945/0.428 | 114 | 150 | 1200 | 1500 | 1200 | 540 |
50 590/0.563 | 55 | 70 | 1530 | 1500 | 1080 | 1940 |
51 065-70/0.402 | 55 | 58: | 1420 | 945: | 1000 | 1940 |
51 325/0.856 | 55 | 127 | 1030 | 1240 | 1080 | 970 |
51 755-7/0.614 | 100 | 160 | 1420 | 1800 | 1440 | 1400 |
51 791/0.686 | 100 | 180 | 1900 | 2700 | 2200 | 1620 |
51 826-8/0.738 | 114 | 150 | 1850 | 2400 | 1800 | 540 |
52 133-5/0.279 | 114 | 170 | 1170 | 1550 | 1200 | 430 |
1 Julian Date = 2 400 000 + JD listed in table;
2 assumes d=7.5 kpc and
EB-V=0.2;
3 Based on emission line fluxes from Barbá et al. (1992). |
The effective temperature and the luminosity of the hot component can be obtained
from certain unreddened emission line fluxes.
We can determine the hot component temperature using the relationship between
and the fluxes of H
,
He I 4471 and He II 4686
(Iijima 1981) for data acquired outside eclipse (Table 5).
The second column of Table 5 includes
,
the highest observed
ionization potential which is
[1000 K] according to
Mürset & Nussbaumer (1994).
To derive the hot component luminosity the following methods are used.
![]() |
Figure 7:
Evolution of the hot component in the HR diagram. The
observations are separated into four intervals covering the
outburst and its preceeding and subsequent quiescent periods as
indicated in the legend.
The dotted curves are the cooling curves for a 0.64 ![]() ![]() |
If the hot component is a low mass star surrounded by an accretion disk, similar
considerations to those performed for CI Cyg (Kenyon et al.
1991) and AX Per (Mikoajewska & Kenyon 1992) can
be made.
The disk models predict that about one-half of the accretion energy is radiated by
the accretion disk itself, but the rest must be radiated in a boundary layer between
the disk and the central star. Since the temperature in this region (
)
can be higher than 105 K, it emits mostly in the EUV range. If the radiation emitted
shortward of 1200 Å is produced by photoionization followed by recombination, the
luminosity
(UV) can be approximated as the sum of the H I,
He I and He II Lyman continua inferred from H
,
He I 5876,
and He II 4686 emission line fluxes acording to Eq. (8) of Kenyon et al.
(1991).
The radius of the accreting star and the mass accretion rate M can be calculated
in base of Eqs. (9) and (10) of Kenyon et al. (1991). If
,
and
we obtain
which corresponds to a white dwarf
with 0.7
.
During the maximum brigthness (JD 50 590)
-0.9
and M
yr-1.
FN Sgr is an eclipsing symbiotic binary with a period of 568.3 days determined photometrically and confirmed by spectroscopic observations. The present study of FN Sgr may be summarized as follows:
Acknowledgements
Part of this work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Ts 17/2-1, and by the Polish KBN Research Grant No. 1P03D 017 27. The CCD and data acquisition system at CASLEO has been partly finance by R. M. Rich through US NSF grant AST-90-15827.
Date | JD | Range | Phase |
2 440 000+ | [Å] | (*) | |
14/08/90 (![]() |
8117.51 | 5800-7200 | 0.212 |
06/11/90 (![]() |
8201.50 | 5800-7200 | 0.360 |
09/11/90 (![]() |
8204.50 | 4400-5000 | 0.365 |
14/08/951 | 9944.60 | 4150-7300 | 0.427 |
14/08/951 | 9944.64 | 4150-7300 | 0.427 |
14/08/951 | 9944.66 | 4150-7300 | 0.427 |
22/05/97 (![]() |
10 590 | 3540-7425 | 0.563 |
22/05/97 (![]() |
10 590 | 3099-5098 | 0.563 |
07/09/981 | 11 064.65 | 5700-9000 | 0.398 |
12/09/982 | 11 069.63 | 4100-7100 | 0.407 |
25/05/991 | 11 324.83 | 4500-7600 | 0.856 |
31/08/991 | 11 421.64 | 5500-9100 | 0.026 |
31/08/991 | 11 421.66 | 5500-9100 | 0.026 |
02/09/991 | 11 423.59 | 4100-7300 | 0.030 |
03/09/991 | 11 424.65 | 4100-7300 | 0.032 |
03/09/991 | 11 424.67 | 4100-7300 | 0.032 |
28/07/001 | 11 754.74 | 3950-7100 | 0.613 |
28/07/001 | 11 754.76 | 3950-7100 | 0.613 |
30/07/001 | 11 756.74 | 5500-8700 | 0.616 |
30/07/001 | 11 756.76 | 5500-8700 | 0.616 |
02/09/001 | 11 790.66 | 3900-7100 | 0.676 |
03/09/001 | 11 791.67 | 5500-8700 | 0.678 |
07/10/001 | 11 825.57 | 4200-7300 | 0.737 |
07/10/001 | 11 825.58 | 4200-7300 | 0.737 |
08/10/001 | 11 826.58 | 4200-7300 | 0.739 |
09/10/001 | 11 827.56 | 5800-9000 | 0.741 |
09/10/001 | 11 827.57 | 5800-9000 | 0.741 |
17/04/011 | 12 017.88 | 3850-7100 | 0.076 |
17/04/011 | 12 017.91 | 3850-7100 | 0.076 |
29/05/011 | 12 059.88 | 5500-8600 | 0.150 |
10/08/011 | 12 132.67 | 4100-7200 | 0.278 |
10/08/011 | 12 132.68 | 4100-7200 | 0.278 |
10/08/011 | 12 132.68 | 4100-7200 | 0.278 |
12/08/011 | 12 134.66 | 4100-7200 | 0.281 |
24/04/021 | 12 389.86 | 4800-7500 | 0.730 |
24/04/021 | 12 389.91 | 4800-7500 | 0.730 |
09/09/021 | 12 527.58 | 4200-7300 | 0.972 |
11/09/021 | 12 529.57 | 4200-7300 | 0.976 |
13/09/021 | 12 531.60 | 5400-8400 | 0.980 |
|
JD1 | -55 | 590 | 1065/70 | 1325 | 1422/4 | 1755/7 | 1791 | 1826/8 | 2018 | 2060 | 2133/5 | 2390 | 2528/32 |
![]() |
0.428 | 0.563 | 0.402 | 0.856 | 0.029 | 0.614 | 0.677 | 0.738 | 0.075 | 0.150 | 0.279 | 0.730 | 0.976 |
H![]() |
9.5 | 18.5 | 14.3 | 1.9 | 10.5 | 13.0 | 18.9 | 4.1 | 7.2 | 3.3 | |||
[O III] 4363 | 0.4 | 2.2 | 0.1 | 1.8 | 3.8 | 4.7 | 3.7 | 2.3 | 2.6 | 1.1 | |||
He I 4388 | 1.0 | 2.1 | 1.2 | 0.1 | 1.0 | 1.9 | 1.0 | 0.2 | 0.6 | ||||
He I 4471 | 1.0 | 4.5 | 2.6 | ... | 1.2 | 1.7 | 1.2 | 0.5 | 0.4 | 0.5 | |||
He II 4541 | 0.6 | ... | ... | ... | 0.6 | 1.5 | 0.9 | 0.5 | 0.5 | 0.4 | |||
Fe II 4584 | 0.4 | ... | ... | 0.8 | 0.3 | 0.6 | 0.3 | ... | 0.2 | ... | ... | ||
Fe II 4629 | ... | 0.6 | 0.1 | 0.2 | 0.2 | 0.5 | 0.3 | ... | 0.1 | ... | ... | ||
N III 4634 | 0.3 | ... | ... | 0.2 | 0.7 | 1.6 | 0.8 | ... | ... | ... | ... | ... | |
N III 4641 | 0.6 | ... | ... | ... | ... | 2.1 | 4.4 | 1.7 | 0.3 | 0.4 | 0.2 | ||
He II 4686 | 14.0 | 0.9 | 0.1 | 8.5 | 3.4 | 18.3 | 31.7 | 21.3 | 11.5 | 17.1 | 7.1 | ||
H![]() |
25.1 | 42.7 | 41.4 | 25.0 | 5.5 | 29.7 | 36.5 | 39.2 | 9.4 | 22.7 | 19.0 | 7.2 | |
He I 4922 | 3.2 | 2.9 | 1.6 | 2.2 | 0.3 | 3.0 | 3.8 | 2.5 | 0.5 | 1.7 | 1.0 | 0.2 | |
Fe II 4924 | 0.3 | 1.1 | 0.1 | ... | 0.3 | 0.7 | 0.2 | 0.1 | ... | ... | |||
[O III] 4959 | ... | ... | 3.2 | 1.4 | 2.4 | 2.2 | 1.1 | 0.6 | 0.8 | 0.2 | 0.4 | ||
[O III] 5007 | 0.2 | 3.3 | 1.4 | 9.7 | 3.7 | 7.5 | 5.0 | 3.7 | 1.9 | 2.3 | 0.9 | 1.0 | |
He I 5016 | 1.7 | 3.6 | 2.8 | 2.2 | 0.4 | 1.6 | 2.0 | 1.2 | 0.5 | 0.8 | 0.4 | 0.3 | |
Fe II 5018 | 0.7 | 1.1 | 0.2 | 0.2 | 0.6 | 1.1 | 0.6 | 0.1 | 0.2 | 0.2 | ... | ||
He I 5047 | 0.6 | ... | 0.8 | 9.6 | ... | 0.3 | 1.4 | 1.1 | ... | ... | 0.3 | ... | |
He II 5411 | 1.3 | ... | ... | 0.3 | 0.2 | 1.6 | 3.9 | 1.8 | 1.0 | 1.4 | 1.3 | 0.7 | |
[Fe VII] 5720 | 0.6 | ... | ... | ... | ... | 0.4 | 0.6 | 0.8 | 1.2 | 1.2 | 1.3 | 1.8 | 1.4 |
He I 5876 | 6.1 | 10.7 | 9.4 | 10.3 | 2.4 | 6.1 | 8.2 | 8.7 | 2.6 | 1.7 | 4.0 | 2.2 | 2.8 |
[Fe VII] 6087 | 0.9 | ... | ... | ... | 0.3 | 0.7 | 1.1 | 1.1 | 2.0 | 2.3 | 2.8 | 2.9 | 2.2 |
H![]() |
127 | 207 | 180 | 192 | 43.0 | 118 | 208 | 187 | 51.0 | 58.7 | 105 | 84 | 44.9 |
H![]() |
... | 64 | 38 | 42 | 25 | 38 | 51 | 11 | 7.1 | 5.3 | ... | 6.2 | |
He I 6678 | 13.1 | 5.4 | 4.2 | 6.1 | 1.5 | 8.7 | 9.0 | 8.7 | 2.4 | 1.7 | 3.2 | 2.5 | 0.7 |
O VI 6825 | 2.7 | ... | ... | ... | ... | ... | ... | 2.5: | ... | 0.5: | 2.3: | 2.4 | 1.1 |
He I 7065 | 6.6 | 5.5 | 4.9 | 10.2 | 2.3 | 6.6 | 8.5 | 10.1 | 3.8 | 1.9 | 3.9 | 2.2 | 2.7 |
He I 7281 | 2.5 | 1.3 | 0.8 | 1.8 | 0.3 | 1.5 | 2.3 | 1.6 | 0.6 | 0.6 | 0.9 | 0.2 | |
[TiO]1 | 0.27 | 0.075 | 0.21 | 0.30 | 0.71 | 0.45 | 0.46 | 0.64 | 0.35 | 0.35 | 0.35 | 0.34 | |
![]() |
12.5 | 11.4 | 11.32 | 12.1 | 13.4 | 11.7 | 11.6 | 12.5 | 13.2 | 12.6 | 12.7 | 12.7 | 13.4 |
1 Julian Date = 2 450 000 + JD listed in table;
2 scaled to
;
3 central absorption.
JD/Phase | M-abs | cF-type | Broad emission wings | Fe II | He I | He II | [O III] | [Fe VII] | ||
2440000+ | H![]() |
H![]() |
He II
![]() |
![]() |
![]() |
|||||
7357.867
![]() |
-44 | |||||||||
7359.867
![]() |
-86 | |||||||||
7363.867
![]() |
-54 ![]() |
|||||||||
7364.867
![]() |
-36 | -28 (1) | ||||||||
7779.867
![]() |
-61 | |||||||||
8117.505/ 0.21 | -56 | -84 ![]() |
-70 (1) | -104 | ||||||
8201.500/ 0.36 | -47 ![]() |
-43 | -81 | -65 ![]() |
-62 (1) | -110 | ||||
8204.500/ 0.37 | -75 ![]() |
-68 | -55 ![]() |
-50 ![]() |
-67 (1) | -38 | ||||
9944.597/ 0.43 | -50 ![]() |
-42 ![]() |
-65 | -66 | -66 | - | ||||
9944.635/ 0.43 | -50 ![]() |
-42 ![]() |
-64 | -64 | -65 | -68 ![]() |
-64 ![]() |
-60 ![]() |
-82 | |
9944.662/ 0.43 | -54 ![]() |
-43 ![]() |
-65 | -59 | -70 | -63 ![]() |
-64 ![]() |
-58 ![]() |
-37 | -87 |
11 064.648/ 0.40 | -46 ![]() |
-58 | -62 ![]() |
-40 ![]() |
-188 | |||||
11 069.634/ 0.41 | -46 ![]() |
-60 | -47 | -63 | ||||||
11 324.827/ 0.86 | -61 ![]() |
-34 ![]() |
-32 | -35 | -33 | -42 ![]() |
-39 ![]() |
-26 (1) | -47 | |
11421.636/ 0.03 | -54 ![]() |
-55 | -70 ![]() |
-64 ![]() |
-46 | |||||
11 421.659/ 0.03 | -53 ![]() |
-56 | -67 ![]() |
-24 | ||||||
11 423.592/ 0.03 | -54 ![]() |
-54 ![]() |
-51 | -54 | -69 ![]() |
-65 ![]() |
-61 ![]() |
-48 | -50 | |
11 424.650/ 0.03 | -52 ![]() |
-52 ![]() |
-52 | -55 | -52 | -66 ![]() |
-68 ![]() |
-62 ![]() |
-49 | -32 |
11 424.672/ 0.03 | -55 ![]() |
-53 ![]() |
-56 | -56 | -51 | -67 ![]() |
-68 ![]() |
-65 (1) | -50 | -36 |
11 754.741/ 0.61 | -60 ![]() |
-34 ![]() |
-25 | -33 | -36 | -46 ![]() |
-30 ![]() |
-35 ![]() |
-51 | -75 |
11 754.764/ 0.61 | -61 ![]() |
-31 ![]() |
-24 | -32 | -37 | -48 ![]() |
-31 ![]() |
-37 ![]() |
-53 | -73 |
11 756.745/ 0.62 | -59 ![]() |
-33 | -46 ![]() |
-33 ![]() |
-72 | |||||
11 756.763/ 0.62 | -61 ![]() |
-30 | -47 ![]() |
-35 ![]() |
-56 | |||||
11 790.664/ 0.68 | -63 ![]() |
-30 ![]() |
-27 | -38 | -34 | -40 ![]() |
-31 ![]() |
-33 ![]() |
-51 | -73 |
11 791.668/ 0.68 | -59 ![]() |
-24 | -42 ![]() |
-34 ![]() |
-26 ![]() |
-66 | ||||
11 825.572/ 0.74 | -30 ![]() |
-30 | -32 | -38 | -46 ![]() |
-39 ![]() |
-42 ![]() |
-57 | -66 | |
11 825.585/ 0.74 | -30 ![]() |
-33 | -37 | -49 ![]() |
-37 ![]() |
-47 ![]() |
-57 | -68 | ||
11 826.576/ 0.74 | -64 ![]() |
-31 ![]() |
-30 | -37 | -50 ![]() |
-37 ![]() |
-42 ![]() |
-55 | -62 | |
11 827.559/ 0.74 | -64 ![]() |
-48 ![]() |
-38 ![]() |
-59 | ||||||
11 827.572/ 0.74 | -64 ![]() |
-34 | -48 ![]() |
-38 ![]() |
-42 (1) | -60 | ||||
12 017.884/ 0.08 | -52 ![]() |
-56 ![]() |
-35 | -48 | -40 | -67 ![]() |
-56 ![]() |
-48 ![]() |
-70 | -41 |
12 017.906/ 0.08 | -54 ![]() |
-56 ![]() |
-34 | -49 | -41 | -66 ![]() |
-57 ![]() |
-47 ![]() |
-70 | -40 |
12 059.878/ 0.15 | -44 ![]() |
-54 | -60 ![]() |
-48 | ||||||
12 132.668/ 0.28 | -42 ![]() |
-77 ![]() |
-69 | -57 | -62 | -64 ![]() |
-65 ![]() |
-70 ![]() |
||
12 132.684/ 0.28 | -44 ![]() |
-71 ![]() |
-59 | -57 | -65 | -61 ![]() |
-64 ![]() |
-73 ![]() |
-69 | -85 |
12 134.660/ 0.28 | -45 ![]() |
-72 ![]() |
-60 | -54 | -68 | -65 ![]() |
-64 ![]() |
-67 ![]() |
-31 | -59 |
12 389.860/ 0.73 | -63 ![]() |
-35 ![]() |
-55 ![]() |
-54 ![]() |
-40 (1) | -42 | -68 | |||
12 389.908/ 0.73 | -62 ![]() |
-31 ![]() |
-59 ![]() |
-55 ![]() |
-48 (1) | -42 | -68 | |||
12 527.583/ 0.97 | -56 ![]() |
-55 ![]() |
nd | -57 ![]() |
-59 ![]() |
-108 | -41 | |||
12 529.574/ 0.98 | -52 ![]() |
-53 ![]() |
nd | -57 ![]() |
-61 ![]() |
-107 | -47 | |||
12 531.601/ 0.98 | -51 ![]() |
nd | -54 ![]() |
-45 |
![]() nd: non detected. |