Table 3: Analytical expression for Alterman et al. (1959) solution of the gravito-elastic deformation equations, generalized for a three-layer Earth.
  Earth Core Inner core
y1 $\frac{C_1}{r^n}+\frac{C_2}{r^{n+2}}+C_3r^{n+1}+C_4r^{n-1}$ y5/gn G3rn+1+G4 rn-1
y2 $\frac{-2\mu C_1(n^2+3n-1)}{(n+1)r^{n+1}}
-\frac{2C_2(n+2)\mu}{r^{n+3}}+\frac{2}{n}C_3\mu (n^2-n-3)r^n$ / $\frac{2}{n}\mu_gG_3\left(n^2-n-3\right)
r^n+2\mu_gG_4(n-1)r^{n-2}$
  $\; \; \; \hspace{1cm} +2\mu
C_4(n-1)r^{n-2}-\rho_my_5+g\rho_my_1$   $ \; \;\;\hspace{1cm} -\rho_gy_5+g\rho_gy_1$
y3 $-\frac{(n-2)C_1}{n(n+1)r^n}-
\frac{C_2}{(n+1)r^{n+2}}+\frac{C_3(n+3)}{n(n+1)}r^{n+1}+\frac{C_4}{n}r^{n-1}$ / $G_3r^{n+1}\frac{n+3}{n(n+1)}+r^{n-1}\frac{G_4}{n}$
y4 $ \mu C_1\frac{2(n-1)}{nr^{n+1}}+\mu
C_2\frac{2(n+2)}{(n+1)r^{n+3}}+\mu C_3 \frac{2(n+2)}{n+1}r^n $ 0 $2\mu_gG_3r^n\frac{n+2}{n+1}+2\mu_gG_4\frac{n-1}{n}r^{n-2}$
  $+\frac{2(n-1)}{n}\mu C_4 r^{n-2} $    
y5 $C_5r^n+\frac{C_6}{r^{n+1}}$ $Cr^n+\frac{Dc}{r^{n+1}}$ G5 rn
y6 $n C_5
r^{n-1}-C_6\frac{n+1}{r^{n+2}}-\frac{3g_0\rho_my_1}{a\rho_M}$ $nCr^{n-1}-\frac{Dc(n+1)}{r^{n+2}}-\frac{3g_0\rho_{\rm f}y_1}{a\rho_M}$ $ G_5 nr^{n-1}-3\frac{g_0\rho_g y_1}{a\rho_M}$


Source LaTeX | All tables | In the text