Table 2: Analytical expression of the resonance strengths in Formula (53). The first column indicates the cause and the normalization of the forcing.
  $A^{\rm TI}$ $A^{\rm FCN}$ $B^{\rm FICN}$

$\displaystyle{\frac{3W}{\Omega^2a^2}}$
$\displaystyle\alpha\frac{A}{A_m}-\frac{q_0}{2}h_{\rm f}^0 \frac{A_{\rm f}}{A_m}$ $\displaystyle\frac{\left(\alpha-\frac{q_0}{2}h_{\rm f}^0\right)x_{\rm FCN}A_{\rm f}}{A_m}$ $\displaystyle\frac{\left(\alpha_{\rm s}(1+k_0^{\rm s})\frac{\rho_{\rm s}-\rho_{...
...N}+A\lambda_z-A_mx_{\rm FCN}\right)}{AA_m\left(x_{\rm FCN}-x_{\rm FICN}\right)}$
$\displaystyle\chi_{\rm w}$ $\displaystyle-\alpha\frac{A_{\rm f}x_{\rm FCN}+Ax}{A_m}$ $\displaystyle-\alpha
x_{\rm FCN}^2\frac{A_{\rm f}}{A_m}$ $\displaystyle-\frac{\alpha A_{\rm s} x_{\rm FICN}^2
\left(Ax_{\rm FICN}+A\lambd...
...\lambda_z-A_mx_{\rm FCN}\right)}{A_m^2A\left(x_{\rm FCN}-x_{\rm FICN}\right)^2}$
$\displaystyle\chi_{\rm p}$ $\displaystyle\alpha\frac{A_{\rm f}}{A_m}\hat h_{\rm f}^0$ $\alpha x_{\rm FCN}
\hat h_{\rm f}^0\frac{A_{\rm f}}{A_m}$ $\displaystyle-\frac{\alpha A_{\rm s} x_{\rm FICN}\left(\bar
h_{\rm s}^0\frac{\r...
...N}+A\lambda_z-A_mx_{\rm FCN}\right)}{AA_m\left(x_{\rm FCN}-x_{\rm FICN}\right)}$


Source LaTeX | All tables | In the text