Table 2: Maximum signal (in absolute value) obtained for each of the lines within the considered cosmological model. It is shown the angular multipole, the redshift and the observed frequency (today) at which we have maximum effect. We also present the (full) widths  $\Delta \ell $ and  $\Delta \nu _0$ around the peak value, defined as the regions where the signal is greater than 70% of the maximum value. The last two columns show the amplitude of the effect in temperature ( $\mu {\rm K}$) and the relative value of the temperature to the primordial CMB power spectrum. All these maximum deviations are negative (i.e. the correction to the power spectrum  $\delta C_\ell $ at those maxima is negative).
Line $\ell_{{\rm max}}$ $\Delta \ell $ $z_{{\rm max}}$ $\nu_0$ $\Delta \nu _0$ $\sqrt{ \ell (\ell+1)\vert\delta C_\ell\vert /2\pi}$ $\sqrt{ \vert\delta C_\ell\vert/C_\ell}$
        [GHz] [GHz] [ $\mu {\rm K}$]  
H$\alpha $ 873 140 1010 452 56 0.28 $5.8\times 10^{-3}$
H$\beta$ 873 140 1010 610 76 0.10 $2.1\times 10^{-3}$
H$\gamma$ 873 140 1010 683 85 0.06 $1.2\times 10^{-3}$
P$\alpha $ 888 121 1050 152 16 $1.6\times 10^{-2}$ $3.5\times 10^{-4}$
P$\beta$ 888 121 1050 223 24 $5.7\times 10^{-3}$ $1.2\times 10^{-4}$
P$\gamma$ 888 121 1050 261 28 $3.3\times 10^{-3}$ $7.1\times 10^{-5}$
B$\alpha $ 891 116 1060 70 7 $8.1\times 10^{-3}$ $1.8\times 10^{-4}$
B$\beta$ 891 116 1060 108 11 $2.9\times 10^{-3}$ $6.4\times 10^{-5}$
B$\gamma$ 891 116 1060 130 13 $1.7\times 10^{-3}$ $3.6\times 10^{-5}$


Source LaTeX | All tables | In the text