Table 5: Table containing a proposed mode identification for the observed frequencies given in Table 1, using the oscillations computed from different models. Values in parentheses correspond to the mode identification numbers ($n,\ell ,m$). The first five models corresponds to those chosen by their proximity to the fundamental radial mode. The last five, corresponds to those chosen by minimum $\sigma ^2$ value. $\nu _i$ represent the theoretical frequencies closest to the observed ones.
  $\nu_1$ $\nu_1^d$ $\nu_2$ $\nu_2^d$ $\nu_3$ $\nu_3^d$ $\nu_4$ $\nu_4^d$ $\nu_5$ $\nu_5^d$ $\sigma ^2$ $\sigma_{\rm d}^2$

m18

(-1, 2, 0) (1, 0, 0) (1, 2, 2) (1, 2, 2) (2, 2, -1) (2, 2, -1) (-1, 2, 0) (-1, 2, 0) (-1, 2, -1) (-1, 2, -1) 16.937 5.698

m19

(-2, 1, 0) (1, 0, 0) (3, 2, 2) (3, 2, 2) (4, 0, 0) (4, 0, 0) (-3, 2, -2) (-1, 1, 0) (-1, 1, -1) (-3, 2, -2) 12.531 4.056

m20

(1, 0, 0) (-1, 2, 0) (1, 2, 2) (1, 2, 2) (2, 2, -1) (2, 2, -1) (-1, 2, 0) (-1, 2, 0) (-1, 2, -1) (-1, 2, -1) 4.575 4.544

m39

(1, 0, 0) (1, 1, 0) (2, 2, 1) (2, 2, 1) (6, 2, 2) (2, 2, 0) (-2, 2, -1) (-2, 2, -1) (-2, 2, -1) (-2, 2, -1) 21.234 7.600

m40

(1, 0, 0) (-1, 2, -2) (1, 2, 0) (1, 2, 0) (3, 1, 1) (3, 1, 1) (-1, 2, -2) (-1, 2, -2) (1, 1, 1) (1, 1, 1) 0.763 1.242

m10

(-1, 1, 0) (-2, 2, 0) (3, 2, 2) (3, 2, 2) (4, 0, 0) (4, 0, 0) (-3, 2, -2) (-1, 1, 0) (-1, 1, -1) (-3, 2, -2) 1.194 0.820

m13

(-1, 2, 0) (-1, 2, 0) (1, 2, 2) (1, 2, 2) (2, 2, -1) (2, 2, -1) (-1, 2, 0) (-1, 2, 0) (-1, 2, -1) (-1, 2, -1) 0.903 0.903

m23

(-1, 2, -2) (-1, 2, -2) (3, 2, 2) (3, 2, 2) (4, 1, -1) (4, 1, -1) (0, 2, 0) (0, 2, 0) (0, 2, 0) (0, 2, 0) 0.835 0.835

m34

(-1, 2, 0) (1, 1, 0) (2, 2, 1) (2, 2, 1) (6, 2, 2) (2, 2, 0) (-2, 2, -1) (-2, 2, -1) (-2, 2, -1) (-2, 2, -1) 1.698 1.228

m58

(-1, 2, -2) (-1, 2, -2) (2, 1, 1) (2, 1, 1) (3, 1, -1) (3, 1, -1) (-1, 1, 1) (-1, 1, 1) (1, 1, 1) (1, 1, 1) 0.639 0.940


Source LaTeX | All tables | In the text