Table 2: Scaling output for a planet like $\tau $ Bootes at different stellar system ages (4.6 Gyr, 1.0 Gyr and 0.7 Gyr). See text for details.
$\tau $ Bootes 4.6 Gyr 1.0 Gyr 0.7 Gyr
v(t) (stellar wind velocity) [km s-1] 400 731 840
n0(t) (stellar wind density at 1 AU) [m-3] $1.0\times 10^{7}$ $9.5\times 10^{7}$ $15.9\times 10^{7}$
$\mathcal{M}$ (magnetic moment) [ $\mathcal{M}_{\rm J}$] $0.5\ldots2.7$ $0.5\ldots2.7$ $0.5\ldots2.7$
$P_{{\rm rad}}$ (emitted radio power) [W] $0.69\times 10^{14}\ldots2.1\times 10^{14}$ $1.3\times 10^{15}\ldots3.8\times 10^{15}$ $2.5\times 10^{15}\ldots7.3\times 10^{15}$
$\Phi_{{\rm AU}}$ (flux density at 1 AU) [Jy] $4.0\times 10^{10}\ldots9.7\times 10^{10}$ $7.4\times 10^{11}\ldots1.8\times 10^{12}$ $1.4\times 10^{12}\ldots3.5\times 10^{12}$
$\Phi_s$ (flux density at distance s) [Jy] $0.0039\ldots0.0094$ $0.071\ldots0.17$ $0.14\ldots0.33$
$f_{\rm c}^{\max}$ (maximum frequency) [MHz] $6.7\ldots19$ $6.7\ldots19$ $6.7\ldots19$


Source LaTeX | All tables | In the text