Table 1: Results of numerical experiments comparing age determination methods using the step method, the corrected step method, the Monte Carlo method, and Bayesian estimation. Each line gives summary statistics from 1000 independent sets of synthetic data generated with the uncertainties specified in the first three columns. All ages are in Gyr. See Sect. 4.3 for further explanation.

Assumed $\sigma$ in
  Median $\tau_{\rm est}$, $\pm $median $\sigma_\tau$,   (% within CI),  [median absolute deviation]
     
[Me/H] $\log T_{\rm eff}$ MV   Step method Corrected   Monte Carlo   Bayesian

Case 1: True age $\tau_{\rm true}=2.18$ Gyr
                 

0.05
0.005 0.05   $2.19\pm 0.11$ (44%) [0.13] $\pm0.19$ (67%)   $2.16\pm 0.20$ (71%) [0.13]   $\rm 2.18^{+0.18}_{-0.20}$ (66%) [0.14]
0.100.010 0.10   $2.15\pm 0.24$ (42%) [0.27] $\pm0.41$ (73%)   $2.12\pm 0.51$ (75%) [0.32]   $\rm 2.20^{+0.36}_{-0.42}$ (68%) [0.25]
0.200.020 0.20   $2.05\pm 0.61$ (50%) [0.65] $\pm1.05$ (77%)   $2.13\pm 1.01$ (70%) [0.68]   $\rm 2.14^{+0.63}_{-0.88}$ (76%) [0.40]


Case 2: True age $\tau_{\rm true}=2.85$ Gyr

                 

0.05
0.005 0.05   $2.98\pm 0.13$ (48%) [0.23] $\pm0.22$ (72%)   $3.10\pm 0.49$ (68%) [0.27]   $\rm 2.83^{+0.21}_{-0.14}$ (72%) [0.09]
0.100.010 0.10   $3.13\pm 0.44$ (41%) [0.46] $\pm0.76$ (64%)   $3.17\pm 0.65$ (64%) [0.47]   $\rm 2.76^{+0.36}_{-0.27}$ (71%) [0.21]
0.200.020 0.20   $3.05\pm 0.66$ (44%) [0.69] $\pm1.14$ (70%)   $3.21\pm 1.10$ (69%) [0.70]   $\rm 2.60^{+0.61}_{-0.52}$ (70%) [0.37]


Source LaTeX | All tables | In the text